• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 45
  • 43
  • 22
  • 15
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 431
  • 103
  • 77
  • 66
  • 62
  • 61
  • 60
  • 48
  • 46
  • 45
  • 44
  • 43
  • 43
  • 40
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Připrava a studium slínkových minerálů / Preparation and study of clinker minerals

Khongová, Ingrid January 2019 (has links)
Diploma thesis deals with laboratory preparation of the main clinker mineral - alit. The theoretical part summarizes the existing knowledge and the practical part deals with the methodology of preparation of the alite. The main goal was to prepare and study the monoclinic phases of alite, another goal was to optimize the triclinic alite.
202

Nvrh a testovn­ p­pravku pro post-mortem XRD mÄen­ elektrod li-ion bateri­ v inertn­ atmosf©e / Design and testing of XRD holder for post-mortem analysis of li-ion battery electrodes performed in an inert atmosphere

KlvaÄ, Ondej January 2020 (has links)
The work describes the design and manufacturing of a test device for post-mortem measurements of electrodes of electrochemical cells using X-ray diffraction spectroscopy. The theoretical part describes the diffractometer Rigaku Miniflex 600, for which the product is intended. At the same time, an overview of solutions in various applications is processed here in the form of a recherche. The practical part documents the current development of a new cell, on which tests were performed. Here is an overview of the influence of gases and insulating materials on the resulting data, especially distortion and attenuation. Subsequently, a new design with improved hermetic insulation and sample displacement error correction is described. The principle of operation of the manufactured cell, including the control unit and software, is elaborated in the form of technical documentation. Finally, the functionality is verified by comparing the diffractograms of the powder standards and the graphite electrodes.
203

Vliv pH záměsové vody na hydrataci a mechanické vlastnosti cementových kompozitů. / Effect of pH of mixing water on hydration and mechanical properties of cement composites.

Bezděk, Ondřej January 2015 (has links)
This master’s thesis is focused on the effect of mixing water pH value on hydration and mechanical properties of cement composites based on portland cement. Source material was CEM I 42,5 R. Hydration process was analyzed by isoperibolic calorimetry, X-ray diffraction analysis and differential thermal analysis. Compressive and flexural strength was examined as mechanical properties. The samples microstructure was observed by scanning electron microscopy. Influence of mixing water pH value on flexural and compressive strength, retardation of hydration and ratio of individual phases was shown.
204

Optimierung des XRD 3000PTS für Diffraktometrie und Reflektometrie an dünnen Schichten

Kehr, Mirko 30 September 2003 (has links)
Thin films become more and more important in science and industry. The main objective of this work was the expanding of the measurement capabilities of the XRD 3000PTS to the field of thin films. The success of the changes was documented by maesurements on TiC thin films. / Dünne Schichten gewinnen in Forschung und Industrie zunehmend an Bedeutung. Ziel der Arbeit war es deshalb, den Einsatzbereich des vorhandenen Diffraktometers XRD 3000PTS auf Untersuchungen an dünnen Schichten zu erweitern. Der Erfolg der Veränderungen konnte mit Messungen an einer TiC Probenserie bestätigt werden.
205

Příprava a charakterizace substituovaných Y ferritů ve formě keramik a tenkých vrstev / Preparation and characterization of substituted Y ferrites in the form of ceramics and thin films

Pulmannová, Dorota January 2016 (has links)
Title: Preparation and characterization of substituted Y ferrites in the form of ceramics and thin films Author: Dorota Pulmannová Department: Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague Supervisor: RNDr. Daniel Nižňanský, Ph.D. Consultant: Ing. Josef Buršík, CSc. Abstract: In this work we describe a preparation and characterization of a hexagonal ferrite series with composition BaSrCoZnXFe11O22 where X=Fe, Al, Ga, In and Sc. We have prepared these ferrites in the powder and ceramic form using the citrate synthesis and in the thin film form using the chemical solution deposition method. Using the powder neutron diffraction we have found that the sample containing only Fe has collinear magnetic structure that belongs to the C2/m or C2'/m' group. Magnetic structure of the samples substituted with In and Sc is similar, but the magnetic moments of the 18hVI site atoms are not aligned parallely with the other moments. Magnetic structure of Ga-substituted sample is different, it is modulated with a propagation vector k ≈ (0, 0, 3/4). Propagation vector of the Al-substituted ferrite is k ≈ (0, 0, 3/2). Substituting elements show strong preferences for the cation sites. Al and Ga prefer the 3bVI site, Zn prefers the tetrahedral 6cIV and In and Sc prefer the 6cVI site. Room...
206

Photo-physical properties of lead-tin binary Perovskite thin films

Mabiala, Floyd Lionel January 2021 (has links)
>Magister Scientiae - MSc / Organic-inorganic lead-based perovskite has exhibited great performance in the past few years. However, the lead (Pb) embedded in those compounds is a significant drawback to further progress, due to its environmental toxicity. As an alternative, tin (Sn) based-perovskites have demonstrated promising results in terms of electrical and optical properties for photovoltaic devices, but the oxidation of tin ion- from stannous ion (Sn2+) to stannic ion (Sn4+) presents a problem in terms of performance and stability when exposed to ambient conditions. A more feasible approach may be in a Pb-Sn binary metal perovskite in pursuit of efficient, stable perovskite solar cells (PSCs) with reduced Pb-content, as compared to pure Pb- or Sn-based PSCs. Here, we report on the deposition of a Pb-Sn binary perovskite by sequential chemical vapor deposition.
207

From Magnetite to Cobalt Ferrite Thin Films: New Perspectives for the Growth of Thin Ferrite Films for their Application in Spintronics

Thien, Jannis 01 June 2022 (has links)
This work addresses the growth of ultrathin magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) films and their thorough structural, electronic, and magnetic characterization. In a first step, ultrathin Fe3O4 films are grown on SrTiO3(001) substrates by reactive molecular beam epitaxy (RMBE) and the substrate-induced anomalous strain behavior of the films is investigated by complementary high-resolution transmission electron microscopy (HRTEM) and (grazing incidence) X-ray diffraction [(GI)XRD] measurements. Next, an additional CoO film is deposited on similar Fe3O4/SrTiO3(001) heterostructures to demonstrate an alternative route for the synthesis of cobalt ferrite films through the thermally mediated interdiffusion of both oxide films. The evolution from the initial bilayer stacks to completely reacted cobalt ferrite films is extensively monitored by soft and hard X-ray photoelectron spectroscopy (soft XPS and HAXPES) and (GI)XRD. Complete intermixing and formation of single cobalt ferrite films is confirmed by angular-resolved HAXPES (AR-HAXPES) and X-ray reflectivity (XRR). The study of the cationic distribution resulting from this novel synthesis technique and its effects on the magnetic properties of the cobalt ferrite films is the subject of the subsequent part. Here, X-ray magnetic circular dichroism (XMCD) and superconducting quantum interference device (SQUID) magnetometry serve as key investigation techniques, which are further complemented by AR-HAXPES and atomic force microscopy (AFM) measurements. In a final step, highly crystalline cobalt ferrite films with different cationic stoichiometries are grown on MgO substrates using RMBE while their growth behavior is captured in real-time using operando XRD. Further structural characterization of the films is carried out by low-energy electron diffraction and XRR, whereas HAXPES and SQUID provide fundamental information on the electronic, chemical, and magnetic properties of the films.
208

Long term aging and creep exposure for advanced heat resistant alloys : A phase analysis

Lundberg, Daniel, Wilson, Filip, Gunnarsson, Hjalmar, Sjörén, Leo, Xu, Robin, Djurberg, Erik January 2021 (has links)
This project was ordered by Sandvik Materials Technology and was performed by a group of students at Uppsala university. The purpose of the project was to study precipitation behavior and structure stability in six advanced heat resistant alloys. Each sample were subjected to a creep rupture test in 600 or 700°C depending on the alloy type. Two parts of each alloy where examined; one part which had been affected by creep and another part which was unaffected by creep. A literature study was performed first to gain knowledge of the scientific theory utilized in this project, namely creep, precipitation hardening, and about the different materials which were analyzed. Preliminary results for the phase composition of the materials were obtained from a Thermo-Calc (TC) simulation. The SEM-images showed nothing noteworthy for any sample due to the roughness of the sample surfaces. The EDS-analysis showed chromium depletion in the centers of the aged samples of HT9 and Sanicro® 75X. Other minority phases such as Cr23C6 in Sanicro®70, P-phase and a titanium nitride phase in sanicro® 60X, VB in Esshete 1250 and Sigma-phase in 4C54 were identified using EDSmapping. It was found that when using XRD to analyze the phase compositions of small samples it is impractical to have the samples cast in bakelite beforehand. The XRD-results obtained in this project showed that more than 90% of the XRD diffractogram for every sample was graphite, which made the identification of minority phases impossible. The quality of the LOM-images varied greatly between samples, for 4C54 grain sizes were measured in all images, for Esshete 1250 grain sizes were measured for the crept sample, and for Sanicro® 60X measurements could only be taken from one image. Most of the sample preparation was insufficient to achieve the test results necessary for complete microstructural analysis and phase analysis of the samples. The mistakes in the practical steps of the project were noted and improvements for these mistakes are presented in the conclusion.
209

The Degradation Mechanisms of Nickel Metal-Hydride Battery and Lead Acid Battery during Open Circuit / ニッケル水素電池、鉛蓄電池の開回路時における劣化機構

Iwai, Taichi 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第21879号 / エネ博第380号 / 新制||エネ||74(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)准教授 高井 茂臣, 教授 萩原 理加, 教授 佐川 尚 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
210

Materials Approaches for Transparent Electronics

Iheomamere, Chukwudi E. 12 1900 (has links)
This dissertation tested the hypothesis that energy transferred from a plasma or plume can be used to optimize the structure, chemistry, topography, optical and electrical properties of pulsed laser deposited and sputtered thin-films of ZnO, a-BOxNy, and few layer 2H-WS2 for transparent electronics devices fabricated without substrate heating or with low substrate heating. Thus, the approach would be compatible with low-temperature, flexible/bendable substrates. Proof of this concept was demonstrated by first optimizing the processing-structure-properties correlations then showing switching from accumulation to inversion in ITO/a-BOxNy/ZnO and ITO/a-BOxNy/2H-WS2 transparent MIS capacitors fabricated using the stated processes. The growth processes involved the optimization of the individual materials followed by growing the multilayer stacks to form MIS structures. ZnO was selected because of its wide bandgap that is transparent over the visible range, WS2 was selected because in few-layer form it is transparent, and a-BOxNy was used as the gate insulator because of its reported atomic smoothness and low dangling bond concentration. The measured semiconductor-insulator interfacial trap properties fall in the range reported in the literature for SiO2/Si MOS structures. X-ray photoelectron spectroscopy (XPS), Hall, photoluminescence, UV-Vis absorption, and X-ray diffraction (XRD) measurements investigated the low-temperature synthesis of ZnO. All films are nanocrystalline with the (002) XRD planes becoming more prominent in films grown with lower RF power or higher pressure. Low power or high chamber pressure during RF magnetron sputtering resulted in a slower growth rate and lower energetic conditions at the substrate. Stoichiometry improved with RF power. The measurements show a decrease in carrier concentration from 6.9×1019 cm-3 to 1.4×1019 cm-3 as power increased from 40 W to 120 W, and an increase in carrier concentration from 2.6×1019 cm-3 to 8.6×1019 cm-3 as the deposition pressure increased from 3 to 9 mTorr. The data indicates that in the range of conditions used, bonding, stoichiometry, and film formation are governed by energy transfer from the plasma to the growing film. XPS characterizations, electrical measurements, and atomic force microscopy (AFM) measurements reveal an increase in oxygen concentration, improved dielectric breakdown, and improved surface topography in a-BOxNy films as deposition pressure increased. The maximum breakdown strength obtained was ~8 MVcm-1, which is comparable to a-BN. Metal-Insulator-Metal (MIM) structures of a-BOxNy grown at 10 and 15 mTorr suggest a combination of field-enhanced Schottky emission and Frenkel-Poole emission are likely transport mechanisms in a-BOxNy. In comparison, better fitted data was gotten for field enhanced Schottky emission which suggests the more dominant mechanism. The static dielectric constant range is 3.26 – 3.58 for 10 and 15 mTorr films. Spectroscopic ellipsometry and UV-Vis spectroscopy measured a bandgap of 3.9 eV for 15 mTorr grown a-BOxNy. 2H-WS2 films were grown on both quartz and a-BOxNy which revealed that the XRD (002) planes became more prominent as substrate temperature increased to 400 oC. AFM shows nano-grains at lower growth pressure. Increasing the growth pressure to 1 Torr resulted in the formation of larger particles. XPS chemical analysis reveals improved sulfur to tungsten ratios as pressure increased. Sulfur deficient films were n-type, whereas sulfur rich conditions produced p-type films. Frequency dependent C-V and G-V measurements revealed an interface trap concentration (Nit) of 7.3×1010 cm-2 and interface state density (Nss) of 7.5×1012 eV-1cm-2 for the transparent ITO/a-BOxNy/ZnO MIS structures, and approximately 2 V was required to switch the a-BOxNy/ZnO interface from accumulation to inversion. Using 2H-WS2 as the channel material, the ITO/a-BOxNy/2H-WS2 required approximately 4 V to switch from inversion to accumulation in both n and p-channel MIS structures. Interface trap concentrations (Nit) of 1.6×1012 cm-2 and 3.2×1010 cm-2, and interface state densities (Nss) of 1.6×1012 eV-1cm-2 and 6.5×1012 eV-1cm-2 were calculated for n and p-channel 2H-WS2 MIS structures, respectively. The data from these studies validate the hypothesis and demonstrate the potential of ZnO, a-BOxNy, and few layer 2H-WS2 for transparent electronics.

Page generated in 0.0506 seconds