• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 35
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 32
  • 30
  • 20
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Aplicação de uma mistura de enzimas para hidrolisar bagaço de cana-de-açúcar pré-tratado com sulfito / Application of enzyme mixture to hydrolyze sugarcane bagasse pretreated with alkali sulfite

Reinoso, Felipe Andres Montoya 26 August 2013 (has links)
O cultivo da cana-de-açúcar é uma das atividades agrícolas mais importantes no Brasil, produzindo após a moagem o caldo, utilizado para a produção de açúcar e etanol, e o bagaço, resíduo lignocelulósico. O bagaço é recalcitrante à hidrólise enzimática, em parte pela baixa porosidade, resultante do recobrimento das fibrilas de celulose com lignina e hemicelulose. Neste estudo, o bagaço foi pré-tratado com sulfito alcalino nas concentrações de 2,5% de NaOH e 5% de Na2SO3 versus 5% de NaOH e 10% de Na2SO3 para produzir substratos para hidrólise enzimática. Ambos pré-tratamentos produziram substratos com teor de hemicelulose, grupos ácidos, grau de retenção de água e área superficial semelhantes. O conteúdo de lignina foi bem diferente nos bagaços pré-tratados com 5% de sulfito (21% de lignina) e 10% de sulfito (13% de lignina). A hidrólise da celulose e hemicelulose do bagaço com alto teor de lignina, utilizando a carga enzimática de 40 FPU/g e 80 U/g de ?-glicosidase foram próximas a 50% em 48 horas e, mesmo no bagaço com pouca lignina a conversão dos polissacarídeos não foi completa (90%). Considerando a importância do tipo de enzimas para a conversão dos polissacarídeos dos bagaços pré-tratados, realizou-se um planejamento experimental 24 com 6 pontos centrais ampliado em estrela, para avaliar uma mistura de enzimas partindo de 5 FPU/g do extrato comercial de Trichoderma reesei (celluclast) combinado com enzimas purificadas comerciais: xilanase de Neocallimastix patriciarum (família 10), xilanase de Thermotoga maritima (família 11), ?-xilosidase de Selelomonas ruminantium e ?-glicosidase de Aspergillus niger. A aplicação da mistura de enzimas otimizada no bagaço pré-tratado com alta carga de sulfito aumentou a conversão de celulose e hemicelulose em 6,6% e 15% respectivamente, comparado com a mistura de referência (5FPU de celluclast e 10UI de Novozyme 188 por grama de bagaço). A suplementação da celluclast com ?-xilosidase e ?- glicosidase foi estatisticamente significativa em 24 horas de hidrólise a um nível de 95% de confiança e a interação da xilanase 10 e 11 foi significativa com um nível de confiança de 90%. Quando foram realizados os mesmos ensaios do planejamento com o substrato com alto teor de lignina, as hidrólises da celulose e hemicelulose com a mistura de enzimas foram inferiores à obtida com a referência. A suplementação com xilanases e ?-xilosidase aumentou a conversão enzimática da hemicelulose apenas do substrato com pouca lignina, entretanto nos hidrolisados de ambos os substratos foi detectada a presença de xilooligossacarídeos, indicando a necessidade de adição de mais ?-xilosidase à mistura enzimática. As velocidades iniciais de hidrólise da celulose e hemicelulose foram pouco alteradas quando a lignina do bagaço reduziu de 21% para 13%, porém a conversão em 48 h de reação foi o dobro. Este estudo mostrou que o acesso das enzimas à hemicelulose foi limitado pelo alto teor de lignina do substrato, e que o benefício do uso de xilanases para a conversão de celulose foi obtido no substrato pré-tratado com alta carga de sulfito. / The cultivation of sugarcane is one of the most important agricultural activities in Brazil. The juice obtained from the crushed stalks of sugarcane is used to produce sugar and ethanol and the dry, fibrous residue remaining is the bagasse. Bagasse is recalcitrant to enzymatic hydrolysis, in part by low porosity due to the partial filling of space between the cellulose microfibrils by lignin and hemicelluloses. In this study, bagasses were pretreated with alkaline sulfite at concentrations of 2.5% NaOH and 5% Na2SO3 NaOH versus 5% and 10% Na2SO3 to produce substrates for enzymatic hydrolysis. Both substrates presented similar hemicellulose content, acid groups, water retention and specific surface area. Lignin content differed between pretreated bagasse with 5% sulfite (21%) and 10% sulfite (13%). The hydrolysis of cellulose and hemicellulose of bagasse with high lignin content, using 40 FPU/g and 80 U/g of ?-glucosidase was aproximately 50% in 48 hours and even on bagasse with low lignin content, the polysaccharides conversion was not complete (90%). Considering the importance of the type of enzymes for the conversion of polysaccharides of pretreated bagasses, a 24 full factorial experimental design with six central points was performed to evaluate a mixture of enzymes. A load of 5 FPU/g of Trichoderma reesei extract (celluclast) was combined with purified commercial enzymes: Neocallimastix patriciarum xylanase (family 10), Thermotoga maritima xylanase (family 11), Selelomonas ruminantium ?-xylosidase and ?-glucosidase from Aspergillus niger. The optimized mixture improved the conversion of cellulose and hemicellulose of the substrate with low lignin content in 6.6% and 15% respectively, when compared to the reference mixture (5FPU of celluclast and 10 IU of novozyme 188 per gram of bagasse). Supplementation with ?-xylosidase and ?-glucosidase was statistically significant at 24 hours of reaction and also the interaction of xylanases 10 and 11. When the same assays were performed with the substrate with low lignin, hydrolysis of the cellulose and hemicellulose with a mixture of purified enzymes was inferior to that obtained by the reference. Supplementation with xylanase and ?-xylosidase improved the enzymatic conversion only for substrate with low lignin content, however in supernatants of both substrates was detected the presence of xylo-oligosaccharides, suggesting the need for further addition of ?-xylosidase to the enzyme mixture. Initial rate of cellulose and hemicellulose hydrolysis changed very little when the lignin in the bagasse was reduced from 21% to 13%, but the conversion at 48 h conversion time was twice higher. This study showed that access of enzymes to the hemicellulose was limited by the high lignin content of the substrate, and that the benefit of using xylanases for the conversion of cellulose was obtained on the substrate pretreated with high sulfite load.
62

Improvement of thermostability of a fungal xylanase using error-prone polymerase chain reaction (EpPCR)

Pillay, Sarveshni January 2007 (has links)
Thesis (M.Tech.: Biotechnology)-Dept. of Biotechnology, Durban University of Technology, 2007 vi, 92 leaves / Interest in xylanases from different microbial sources has increased markedly in the past decade, in part because of the application of these enzymes in a number of industries, the main area being the pulp and paper industry. While conventional methods will continue to be applied to enzyme production from micro-organisms, the application of recombinant DNA techniques is beginning to reveal important information on the molecular basis and this knowledge is now being applied both in the laboratory and commercially. In this study, a directed evolution strategy was used to select an enzyme variant with high thermostability. This study describes the use of error-prone PCR to modify the xylanase gene from Thermomyces lanuginosus DSM 5826, rendering it tolerant to temperatures in excess of 80°C. Mutagenesis comprised of different concentrations of nucleotides and manganese ions. The variants were generated in iterative steps and subsequent screening for the best mutant was evaluated using RBB-xylan agar plates. The optimum temperature for the activity of xylanases amongst all the enzyme variants was 72°C whilst the temperature optimum for the wild type enzyme was 70°C. Long term thermostability screening was therefore carried out at 80°C and 90°C. The screen yielded a variant which had a 38% improvement in thermostability compared to the wild type xylanase from pX3 (the unmutated gene). Successive rounds of error-prone PCR were carried out and in each round the progeny mutant displayed better thermostability than the parent. The most stable variant exhibited 71% residual activity after 90 minutes at 80˚C. Sequence analysis revealed four single amino acid residue changes that possibly enhanced their thermostabilities. This in vitro enzyme evolution technique therefore served as an effective tool in improving the thermostable property of this xylanase which is an important requirement in industry and has considerable potential for many industrial applications.
63

Protein engineering of fungal xylanase

Stephens, Dawn Elizabeth January 2007 (has links)
Thesis (D.Tech.: Biotechnology)-Dept. of Biotechnology, Durban University of Technology, 2007 xi, 209 leaves / Protein engineering technologies, such as directed evolution and DNA recombination, are often used to modify enzymes on a genetic level for the creation of useful industrial catalysts. Pre-treatment of paper pulps with xylanases have been shown to decrease the amounts of toxic chlorine dioxide used to bleach pulp. This study was undertaken to improve the thermal and alkaline stabilities of the xylanase from the fungus Thermomyces lanuginosus using ep-PCR and DNA shuffling.
64

Expression of a modified xylanase in yeast

Mchunu, Nokuthula Peace January 2009 (has links)
Submitted in fulfillment for the requirement of a Degree of Master of Technology: Biotechnology, in the Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa, 2009. / Protein engineering has provided a key for adapting naturally-occurring enzymes for industrial processes. However, several obstacles have to be overcome after these proteins have been adapted, the main one being finding a suitable host to over-express these recombinant protein. This study investigated Saccharomyces cerevisiae, Pichia pastoris and Escherichia coli as suitable expression hosts for a previously modified fungal xylanase, which is naturally produced by the filamentous fungus, Thermomyces lanuginosus. A xylanase variant, NC38, that was made alkaline-stable using directed evolution was cloned into four different vectors: pDLG1 with an ADH2 promoter and pJC1 with a PGK promoter for expression in S. Cerevisiae, pBGP1 with a GAP promoter for expression in P. pastoris and pET22b(+) for expression in E. Coli BL21 (DE3). S. Cerevisiae clones with the p DLG1-NC38 combination showed very low activity on the plate assay and were not used for expression in liquid media as the promoter was easily repressed by reducing sugars used during production experiments. S. cerevisiae clones carrying pJC1-NC38 were grown in media without uracil while P. Pastoris clones were grown in YPD containing the antibiotic, zeocin and E. Coli clones were grown in LB with ampicillin. The levels of xylanase expression were then compared between P. Pastoris, S. cerevisiae and E. coli. The highest recombinant xylanase expression was observed in P. Pastoris with 261.7U/ml, followed by E.coli with 47.9 U/ml and lastly S. cerevisiae with 13.2 U/ml. The localization of the enzyme was also determined. In the methylotrophic yeast, P. Pastoris, the enzyme was secreted into the culture media with little or no contamination from the host proteins, while the in other hosts, the xylanase was located intracellularly. Therefore in this study, a mutated alkaline stable xylanase was successfully expressed in P. Pastoris and was also secreted into the culture medium with little or no contamination by host proteins, which favours the application of this enzyme in the pulp and paper industry.
65

Overexpression and partial characterization of a modified fungal xylanase in Escherichia coli

Wakelin, Kyle January 2009 (has links)
Submitted in complete fulfillment for the Degree of Master of Technology (Biotechnology)in the Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa, 2009. / Protein engineering has been a valuable tool in creating enzyme variants that are capable of withstanding the extreme environments of industrial processes. Xylanases are a family of hemicellulolytic enzymes that are used in the biobleaching of pulp. Using directed evolution, a thermostable and alkaline stabl xylanase variant (S340) was created from the thermophilic fungus, Thermomyces lanuginosus. However, a host that was capable of rapid growth and high-level expression of the enzyme in large amounts was required. The insert containing the xylanase gene was cloned into a series a pET vectors in Escherichia coli BL21 (DE3) pLysS and trimmed from 786 bp to 692 bp to remove excess fungal DNA upstream and downstream of the open reading frame (ORF). The gene was then re-inserted back into the pET vectors. Using optimized growth conditions and lactose induction, a 14.9% increase in xylanase activity from 784.3 nkat/ml to 921.8 nkat/ml was recorded in one of the clones. The increase in expression was most probably due to the removal of fungal DNA between the vector promoter and the start codon. The distribution of the xylanase in the extracellular, periplasmic and cytoplasmic fractions was 17.3%, 51.3% and 31.4%, respectively. The modified enzyme was then purified to electrophoretic homogeneity using affinity chromatography. The xylanase had optimal activity at pH 5.5 and 70°C. After 120 min at 90°C and pH 10, S340 still displayed 39% residual activity. This enzyme is therefore well suited for its application in the pulp and paper industry.
66

Enzymatic hydrolysis with commercial enzymes of a xylan extracted from hardwood pulp [electronic resource] /

Marais, Susann. January 2008 (has links)
Thesis (M.Eng.(Chemical Engineering))--University of Pretoria, 2008. / Includes bibliographical references.
67

Protein engineering of fungal xylanase

Stephens, Dawn Elizabeth January 2007 (has links)
Thesis (D.Tech.: Biotechnology)-Dept. of Biotechnology, Durban University of Technology, 2007 xi, 209 leaves / Protein engineering technologies, such as directed evolution and DNA recombination, are often used to modify enzymes on a genetic level for the creation of useful industrial catalysts. Pre-treatment of paper pulps with xylanases have been shown to decrease the amounts of toxic chlorine dioxide used to bleach pulp. This study was undertaken to improve the thermal and alkaline stabilities of the xylanase from the fungus Thermomyces lanuginosus using ep-PCR and DNA shuffling.
68

Effect of endoxylanases, endoglucanases and their combination on wheat flour bread quality

Roets, Carien 03 1900 (has links)
Thesis (Msc Food Sc (Food Science))--University of Stellenbosch, 2009. / Endoxylanases are known to improve dough stability, oven spring, loaf volume, crumb structure and shelf life. The use of endoglucanases (cellulases) usually results in increased bread loaf volume, bread score and reduced crumb firmness. Even though bakeries use ‘pure’ enzymes in their formulations, they are supplied with an enzyme mixture which can contain up to five different enzymes. These mixtures often also include an emulsifier and ascorbic acid. To compare the ability of endoxylanase and endoglucanase to improve bread quality characteristics, a commercial endoxylanase (from Aspergillus niger) and endoglucanase (from Trichoderma reseei) were evaluated together with a pure endoxylanase and endoglucanase (both from Trichoderma sp). Baking trials were conducted on small (100 g) as well as commercial (700 g) scale. Quality characteristics evaluated included dough quality, bread weight, bread height, bread volume, softness of crumb, bread slice characteristics and overall crumb texture. All the results were compared to a control. From the results of the small-scale baking trials both the pure and commercial endoxylanases significantly (P<0.05) improved bread height and softness of crumb, with the pure endoxylanase also increasing slice brightness. Both the pure and commercial endoglucanases significantly (P<0.05) increased softness of the crumb and slice brightness. When the enzymes were evaluated in combination, only an increase in bread height was observed for some of the combinations. From the results of the baking trials conducted on commercial scale, the loaf height was significantly (P<0.05) increased by the pure endoxylanase and the pure endoglucanase, while the bread volume was significantly (P<0.05) increased by all the enzymes being tested. Enzyme combinations resulted only in a significant (P<0.05) increase in bread volume. The texture of the bread crumb was significantly (P<0.05) influenced by the commercial endoxylanase, the pure endoxylanase, the pure endoglucanase as well as two of the enzyme combinations, resulting in a more open and coarse crumb texture. Slice brightness was significantly (P<0.05) decreased by the commercial endoxylanase, the pure endoxylanase, the pure endoglucanase as well as the two enzyme combinations. Both endoxylanases and endoglucanases can therefore be used to improve bread quality characteristics such as bread height and/or volume, slice brightness and softness of crumb. However, using pure enzymes specific characteristics can be targeted. This would become more feasible if pure or single component enzymes become more readily available and cost effective to use. Apart from testing the effect of the enzymes on bread quality characteristics using small-scale baking trials, it was shown in this study that testing of enzymes could also be efficiently conducted on commercial scale. In the latter the enzymes were being tested using commercial white bread flour as well as a leaner formulation. The leaner formulation allowed for the effect of the enzymes to be observed more prominently. The benefit of the evaluation on commercial scale was that the effect of the enzymes was tested in a process similar to that used in industry.
69

Complexo xilanolítico de Penicillium sclerotiorum: produção, purificação e caracterização de xilanases e de ß-xilosidases

Knob, Adriana [UNESP] 07 August 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-08-07Bitstream added on 2014-06-13T19:22:45Z : No. of bitstreams: 1 knob_a_dr_rcla.pdf: 1207813 bytes, checksum: 318e70abc84de2d440d3a9b60c7b7088 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Enzimas degradadoras de xilana, principal componente da hemicelulose, têm sido utilizadas em várias aplicações biotecnológicas, sendo que em alguns processos é necessário o uso de enzimas purificadas. Aplicações comerciais para as enzimas xilanolíticas envolvem a hidrólise enzimática da xilana, que está presente nos resíduos agrícolas e agroindustriais, sendo convertido a xilose e outros açúcares, que podem ser utilizados como substratos em processos fermentativos para a obtenção de proteínas celulares, combustíveis líquidos e outras substâncias químicas. A utilização destas enzimas também diminui a liberação de agentes poluentes em determinados efluentes, como da indústria de polpa de celulose. Xilanases e β- xilosidases são produzidas principalmente por bactérias e fungos, sendo que em geral, os fungos as produzem em níveis mais elevados. O gênero Penicillium apresenta espécies já caracterizadas como boas produtoras destas enzimas. Uma linhagem deste gênero, isolada de solo brasileiro, na região da Mata Atlântica e identificada como Penicillium sclerotiorum destacou-se por produzir xilanase em níveis elevados. O objetivo deste trabalho consistiu na avaliação da influência das condições de cultivo sobre a produção do complexo xilanolítico produzido por P. sclerotiorum, na caracterização físico-química desse sistema, bem como purificação e caracterização bioquímica de seus principais componentes. Por meio da determinação das condições ótimas de produção e da caracterização deste complexo enzimático foi possível estabelecer metodologias eficientes de purificação de xilanases e uma β-xilosidase. Através da caracterização físico-química das enzimas purificadas, foi possível avaliar seu potencial biotecnológico, visando futuras aplicações em processos industriais. / Xylan degrading enzymes, the main component of hemicellulose, have been used in various biotechnological applications, and in some cases the use of purified enzymes is necessary. Commercial applications of xylanolytic enzymes involve the enzymatic hydrolysis of xylan, which is present in agricultural and agro-industrial wastes, and can be converted to xylose and other sugars, which can be further used as substrates in fermentation processes to obtaining cellular protein, liquid fuels and other chemicals. The utilization of these enzymes also decreases the release of certain pollutants in wastewater, as in the pulp and paper industry. Xylanases and β-xilosidases are mainly produced by bacteria and fungi, and in general, the fungi produce them at higher levels. The genus Penicillium presents species already characterized as good producers of these enzymes. One strain of this genus isolated from Brazilian soil in the Mata Atlântica region and identified as Penicillium sclerotiorum attracted attention by producing xylanase in high levels. The objective of this study was to evaluate the influence of culture conditions on the production of the xylanolytic complex produced by P. sclerotiorum to characterize physical and chemical properties of this system as well to purify and biochemical characterize its main components. By determining optimal conditions for production and by characterizing this enzymatic complex it was possible to establish efficient methodologies for purification of xylanases and one β-xylosidase. Through their physical and chemical characterization, it was possible to evaluate their biotechnological potential for future applications in industrial processes.
70

Expressão gênica e atividades de celulases, ß-glicosidases, xilanases e swoleninas de Penicillium echinulatum S1M29

Zampieri, Denise 06 August 2015 (has links)
A linhagem S1M29 de Penicillium echinulatum é um fungo filamentoso cujo sistema celulolítico tem potencial para aplicação em processos de degradação de materiais lignocelulósicos visando a obtenção de produtos com interesse biotecnológico, como o etanol de segunda geração. A abundância de biomassas lignocelulósicas associada à busca por alternativas aos combustíveis fósseis faz aumentar o interesse em estudos que envolvam a elucidação dos mecanismos de secreção de enzimas lignocelulolíticas. Neste estudo, o P. echinulatum S1M29 foi crescido em condições de indução para a produção de endoglicanases, celobiohidrolases, β-glicosidases, xilanases e swoleninas. Foram avaliados os perfis enzimáticos em géis de poliacrilamida e o padrão de expressão gênica para estas proteínas. Observou-se que a produção enzimática foi favorecida pela presença de celulose Celufloc E® e bagaço de cana-de-açúcar (BCA) no meio de cultivo em comparação à glicose, sendo que o uso de resíduo de biomassa proporcionou a obtenção dos melhores rendimentos. Resultado semelhante foi atingido na análise dos perfis de secreção enzimática em gel de poliacrilamida, sugerindo ainda, a presença de uma endoglicanase constitutiva de aproximadamente 80 kDa. O estudo de qRT-PCR revelou a presença de quatro genes para endoglicanases com padrão de expressão distintos, destacando-se um acúmulo de transcritos 9779,19 vezes superior à amostra calibradora do gene egl1 em 24 h de cultivo no meio formulado com celulose Celufloc E®. Este mesmo gene gerou 1257,58 vezes mais transcritos acumulados que a amostra calibradora em meio suplementado com BCA. Na avaliação da expressão relativa do gene para celobiohidrolase obteve-se expressão superior no meio formulado com BCA em 48 h em relação ao meio com celulose Celufloc E® em 24 h, correspondendo, respectivamente, a 6464,49 e 3093,26 vezes mais transcritos acumulados que a amostra calibradora. O gene para β-glicosidase expressou-se em meio formulado com BCA no início do cultivo, embora a atividade desta enzima tenha ocorrido ao final do cultivo. A expressão de xilanases foi mais significativa com o uso de celulose Celufloc E® no meio de cultivo. Já o gene para swolenina apresenta um perfil de expressão com valores semelhantes em comparação ao uso de celulose Celufloc E® e BCA no meio de cultivo, apesar da presença de BCA ter proporcionado uma expressão mais tardia. Para todos os genes avaliados foram verificados valores muito reduzidos de expressão quando a glicose foi utilizada como fonte de carbono para o P. echinulatum. Observou-se ainda uma expressão coordenada de genes codificadores de endoglicanases, celobiohidrolase, β-glicosidase e swolenina. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2016-01-27T12:06:29Z No. of bitstreams: 1 Tese Denise Zampieri.pdf: 4586084 bytes, checksum: be5eb9fbb555f957a4e737205334ac6d (MD5) / Made available in DSpace on 2016-01-27T12:06:30Z (GMT). No. of bitstreams: 1 Tese Denise Zampieri.pdf: 4586084 bytes, checksum: be5eb9fbb555f957a4e737205334ac6d (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq. / The strain S1M29 of Penicillium echinulatum is a filamentous fungus that presents a cellulolytic system with potential for application in the degradation process of lignocellulosic materials to obtain products of biotechnological interest, such as second-generation ethanol. The availability of lignocellulosic biomass associated with the search for alternatives to fossil fuels increases the interest in studies that involve understanding the secretion mechanisms of lignocellulolytic enzymes. In this study, P. echinulatum S1M29 was grown under inducing conditions for the production of endoglucanases, cellobiohydrolases, β-glucosidases, xylanases and swollenins. The enzyme secretion profiles were evaluated in polyacrylamide gels and the pattern of gene expression for these proteins was also assessed. It was observed that enzyme production was enhanced in the presence of cellulose Celufloc E® and sugar cane bagasse (SCB) in the culture medium compared to glucose, with the use of biomass residue providing the best yields. A similar result was obtained analyzing enzyme secretion profiles in polyacrylamide gels, suggesting the presence of constitutive endoglucanases of approximately 80 kDa. Studies with qRT-PCR revealed the presence of four genes encoding endoglucanases with distinct expression patterns, standing out an accumulation of transcripts from egl1 gene 9779.19 times higher than the calibrator sample in 24 h of growth in medium formulated with cellulose Celufloc E®. The same gene generated 1257.58 more accumulated transcripts than the reference sample in medium supplemented with SCB. Evaluation of gene expression for cellobiohydrolase yielded higher expression levels in the medium formulated with SCB in 48 h, in comparison to the medium containing cellulose Celufloc E® in 24 h, corresponding, respectively, to 6464.49 and 3093.26 more accumulated transcripts than the reference sample. The β-glucosidase gene was expressed in medium formulated with SCB at the beginning of growth, as opposed to that seen for activity of this enzyme, which occurred at the end of cultivation. The xylanase expression was more significant with the use of cellulose Celufloc E® in the culture medium. On the other hand, the gene for swollenin presents an expression profile with similar values compared to using cellulose Celufloc E® and SCB in the culture medium, although the presence of SCB has provided a later expression. Very low values of gene expression have been found for all genes evaluated when glucose was used as carbon source for P. echinulatum. A coordinated expression of endoglucanases, cellobiohydrolase, β-glucosidase and swollenin was was also verified.

Page generated in 0.041 seconds