1 |
Improving digestibility of cattle waste by thermobarical treatmentBudde, Jörn 16 April 2015 (has links)
Im Laborversuch konnte der positive Einfluss einer thermobarischen Vorbehandlung auf die Hydrolysier- und Vergärbarkeit von Rinderfestmist und Rindergülle nachgewiesen werden. Die Laborergebnisse wurden innerhalb eines theoretischen Modells in den Praxismaßstab übertragen, um den Einfluss auf Treibhausgasemissionen, Energiebilanz und Ökonomie zu bewerten. Die Vorbehandlungstemperaturen im Labor lagen zwischen 140 und 220°C in Schritten von 20 K und einer Vorbehandlungszeit von jeweils 5 Minuten. Die höchste Methanmehr¬ausbeute von 58 % konnte bei einer Temperatur von 180°C ermittelt werden. Das Auftreten von Inhibitoren und nicht vergärbaren Bestandteilen führte bei einer Aufbereitungstemperatur von 220°C zu Methanausbeuten, die geringer waren als die des unaufbereiteten Einsatzstoffes. In einer erweiterten Analyse konnte ein funktioneller Zusammenhang zwischen der Methanausbeute nach 30 Tagen und der Methanbildungsrate und -ausbeute während der Beschleunigungsphase gezeigt werden. Mittels einer Regressionsanalyse der so ermittelten Werte wurde nachgewiesen, dass die optimale Aufbereitungstemperatur 164°C ist und die minimale größer als 115°C zu sein hat. Treibhausgasemissionen und Energiebilanz wurden im Rahmen einer Ökobilanz nach ISO 14044 (2006) ermittelt, sowie eine Kosten-Nutzen-Analyse durchgeführt. Dazu wurde eine Anlage zur thermobarischen Vorbehandlung entwickelt und innerhalb eines Modells in eine Biogasanlage integriert. Weiterhin wurde in diesem Modell Maissilage durch Rinderfestmist und / oder Rindergülle als Einsatzstoff ersetzt. Rinderfestmist, ein Einsatzstoff mit hohem organischen Trockenmassegehalt, der ohne Vorbehandlung nicht einsetzbar wäre, erreichte eine energetische Amortisationszeit von 9 Monaten, eine Vermeidung in Höhe der während der Herstellung emittierten Treibhausgase innerhalb von 3 Monaten und eine ökonomische Amortisationszeit von 3 Jahren 3 Monaten, wohingegen Rindergülle keine positiven Effekte zeigte. / Hydrolysis and digestibility of cattle waste as feedstock for anaerobic digestion were improved by thermobarical treatment in lab-scale experiments. The effects of this improvement on greenhouse gas emissions, energy balance and economic benefit was assessed in a full-scale model application. Thermobarical treatment temperatures in lab-scale experiments were 140 to 220°C in 20 K steps for a 5-minute duration. Methane yields could be increased by up to 58 % at a treatment temperature of 180°C. At 220°C, the abundance of inhibitors and other non-digestible substances led to lower methane yields than those obtained from untreated material. In an extended analysis, it could be demonstrated that there is a functional correlation between the methane yields after 30 days and the formation rate and methane yield in the acceleration phase. It could be proved in a regression of these correlation values that the optimum treatment temperature is 164°C and that the minimum treatment temperature should be above 115°C. The theoretical application of a full-scale model was used for assessing energy balance and greenhouse gas emissions following an LCA approach according to ISO 14044 (2006) as well as economy. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and / or solid cattle waste. The integration of thermobarical pretreatment is beneficial for raw material with high organic dry matter content that needs pretreatment to be suitable for anaerobic digestion: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis.
|
2 |
From impact to resourceHansen, Anja 17 May 2017 (has links)
Energie und Rohstoffe auf Basis von Biomasse gelten als wichtiger Beitrag, um den anthropogen begründeten Klimawandel zu mindern. Diese publikationsbasierte Arbeit analysiert, inwiefern Aussagen über Vorzüglichkeit von Biomassenutzung im direkten Vergleich oder auch in komplexeren wirtschaftlichen Nutzungssystemen durch Unsicherheiten in den Treibhausgasemissionen (THG) oder durch die Anwendung der Bewertungsmethodik beeinflusst werden. Eine Fallstudie zur stationären Biostromerzeugung aus der Vergasung von Pappelhackschnitzeln zeigte mittels Monte-Carlo-Analyse, dass dieser Biostrom trotz Unsicherheiten weniger THG emittiert bzw. sogar Kohlendioxid sequestrieren könnte. Die zweite Fallstudie analysierte Biomassenutzung im Systemzusammenhang. Sie bezog neben THG-Emissionen als Bewertungskriterien sowohl den Bedarf an Agrarfläche als auch an fossilen Ressourcen mit ein. Für das Beispiel der Häuserdämmung mittels Hanffasern oder Styropor konnte aus den drei Kriterien auch unter Berücksichtigung mehrerer Szenarien keine eindeutige Vorzugslösung der Biomassenutzung abgeleitet werden. Basierend auf dem Produktivitätskonzept stellt der dritte Beitrag mit CUDe (Carbon Utilization Degree) einen Ansatz vor, wie die Nutzungseffizienz des in der Biomasse bereitgestellten Kohlenstoffs bewertet werden könnte. THG-Minderungsrechnungen erfordern eine fundierte Kenntnis der Methode als auch des Produktionssystems in seinem regionalen Kontext. Als Landnutzungseffekte sollten neben Änderungen im Bodenkohlenstoffgehalt auch Unterschiede in Lachgas-Hintergrundemissionen von annuellen gegenüber mehrjährigen Kulturen berücksichtigt werden. Trade-Offs sprechen dafür, Biomassenutzungssysteme nicht nur hinsichtlich Klimawirksamkeit zu optimieren. Ergänzend könnte Kohlenstoff auch als Ressource betrachtet und mit Effizienzkriterien bewertet werden. Biomassenutzung ließe sich so optimieren, dass gemeinsam mit Klimaschutz weitere aktuelle Handlungsfelder adressiert werden. / Biomass-based energy and materials are considered important for the mitigation of human-induced climate change and as relevant bioeconomic feedstock. This publication-based dissertation aims to contribute to the discussion about the reliability of mitigation assessment of biomass applications in an increasingly bio-based, low-carbon economy that also fulfils sustainability constraints of resource conservation. It analysed how preference of biomass use in direct comparison as well as in larger economic context is affected by single uncertainties as well as by mitigation calculation methods. A case study on stationary bioelectricity generation from poplar wood chip gasification with a Monte Carlo approach showed that such bioelectricity could emit less greenhouse gases (GHG) or even sequester carbon despite existing uncertainties. The second case study analysed biomass use in a systemic context. Besides GHG emissions also resource demand of cropland and fossil fuels were used to assess two strategies to isolate buildings. From the three criteria, none of the strategies would clearly be preferred. The third case study presented an approach to assess the efficiency of biomass carbon use (CUDe; Carbon Utilization Degree) and applied it exemplarily to a biogas and a hemp insulation system. GHG mitigation analyses of biomass use must be performed with profound knowledge of the methodology and the biomass system in its regional context. In land use change assessment, emissions resulting from deviating nitrous oxide baselines from annual and perennial crops should be considered in addition to carbon stock changes. Optimization of biomass applications only with respect to GHG emissions (or other single criteria) might overlook trade-offs. However, multi-criteria analyses might yield ambiguous results. A resource-efficient viewpoint on biogenic carbon use instead of its sole GHG implications might help to foster a transformation to bio-based, low-carbon economies.
|
Page generated in 0.0239 seconds