• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 254
  • 84
  • 74
  • 62
  • 41
  • 17
  • 7
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 622
  • 122
  • 104
  • 76
  • 73
  • 67
  • 63
  • 51
  • 51
  • 51
  • 51
  • 48
  • 47
  • 47
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Σύνθεση και χαρακτηρισμός της δομής και των οπτικών ιδιοτήτων νανοδομών του ZnO

Γκοβάτση, Αικατερίνη 02 March 2015 (has links)
Το οξείδιο του ψευδαργύρου (ZnO) ανήκει στην κατηγορία των διάφανων αγώγιμων οξειδίων και θεωρείται ως το ανόργανο υλικό που επιδεικνύει τη μεγαλύτερη ποικιλία χαμηλοδιάστατων νανοδομών. Νανοδομές διαφόρων μορφολογιών του ZnO αναπτύσσονται με πλήθος μεθόδων – με κυριότερες την αέρια μεταφορά σε υψηλή θερμοκρασία (VLS) και τη χημεία διαλυμάτων – και παρουσιάζουν μεγάλο εύρος πιθανών εφαρμογών σε τομείς όπως η οπτική, η οπτικοηλεκτρονική, οι αισθητήρες, η παραγωγή ενέργειας, οι βιοϊατρικές επιστήμες, κ.α. Παρά τη συστηματική έρευνα σχετικά με την ανάπτυξη των νανοδομών αυτών για πάνω από μια δεκαετία, η καθιέρωση μιας πειραματικής μεθοδολογίας ικανής να παρέχει με επαναλήψιμο τρόπο συγκεκριμένες μορφολογίες νανοδομών του ZnO είναι ακόμα ένα ανοικτό ερώτημα. Αυτό αποτελεί και μια από τις τρέχουσες ερευνητικές προκλήσεις αφού οι παραγόμενες μορφολογίες χαρακτηρίζονται από διαφορετικές φυσικές ιδιότητες ενώ είναι αρκετά ευαίσθητες σε μικρές μεταβολές των πειραματικών συνθηκών. Στόχος της παρούσας εργασίας είναι η συστηματική μελέτη του ρόλου διαφόρων παραμέτρων της σύνθεσης στα μορφολογικά χαρακτηριστικά και τις οπτικές ιδιότητες των νανοδομών του ZnO. Η ανάπτυξη των νανοδομών πραγματοποιήθηκε τόσο με αέρια μεταφορά σε υψηλή θερμοκρασία (VLS) όσο και με τη μέθοδο της κρυστάλλωσης σε υδατικά διαλύματα (CBD). Σκοπός είναι να κατανοηθεί πως συγκεκριμένες παράμετροι επηρεάζουν τη μορφολογία των νανοδομών, το μέγεθος, τις κατανομές των διαμέτρων των μονοδιάστατων νανονημάτων και τον προσανατολισμό αυτών στο υπόστρωμα. Στην πρώτη περίπτωση δόθηκε έμφαση στο ρόλο του πάχους του υμενίου του καταλύτη (Au), αλλά και στον τρόπο ανόπτησης αυτού ώστε να δημιουργηθεί η κατάλληλη μορφολογία του καταλύτη η οποία μέσω της ανάπτυξης με τη μέθοδο VLS επηρεάζει κατ’ επέκταση και τη μορφολογία των νανοδομών του ZnO. Έτσι, επιχρυσωμένα υποστρώματα πυριτίου (Si) με πάχος καταλύτη (h) από 2 nm έως 15 nm χρησιμοποιήθηκαν μετά από ανόπτησή τους σε διάφορες θερμοκρασίες και για διαφορετικούς χρόνους για την ανάπτυξη νανονημάτων ZnO. Διαπιστώθηκε ότι για πολύ λεπτά υμένια Au (h ≤ 3 nm) δημιουργούνται σφαιρικά νανοσωματίδια χρυσού και ο χρόνος ανόπτησης δεν επηρεάζει τη μορφολογία και την κατανομή μεγεθών. Για παχύτερα υμένια (h ≥ 5 nm), ανόπτηση για σύντομο χρόνο δεν επαρκεί για την ανάπτυξη νανοσωματιδίων αντίστοιχα με αυτά των λεπτών υμενίων. Στην περίπτωση αυτή, η αύξηση του χρόνου ανόπτησης ή/και αύξηση της θερμοκρασίας ανόπτησης είναι επιβεβλημένη για την ελάττωση του μέσου μεγέθους. Εν γένει, ανόπτηση σε χαμηλότερη θερμοκρασία (400 °C) για μεγάλο χρονικό διάστημα (30 λεπτά) μετατρέπει τα υμένια του Au σε νανοσωματίδια με ευρείες κατανομές μεγεθών και υψηλές μέσες τιμές. Η ανάπτυξη νανονημάτων ZnO εξαρτάται από το μέσο μέγεθος των νανοσωματιδίων του Au. Η ανάπτυξη παρεμποδίζεται στα μεγάλα μεγέθη νανοσωματιδίων Au αφού ο υπερκορεσμός τους με Zn και O είναι αργός. Ως εκ τούτου, για τα υμένια Au με πάχος μεγαλύτερο από ~10 nm η ανάπτυξη νανονημάτων του ZnO είναι εξαιρετικά περιορισμένη. Στη δεύτερη περίπτωση, εξετάστηκε διεξοδικά ένα πλήθος παραμέτρων όπως η συγκέντρωση των αντιδρώντων στο διάλυμα, η παρουσία οργανικών ενώσεων για τον έλεγχο της διαμέτρου, οι ιδιότητες του πρόδρομου υμενίου κρυστάλλωσης στο υπόστρωμα, ο χρόνος κρυστάλλωσης, κ.α. Γυάλινα αγώγιμα υποστρώματα (FTO) στα οποία είχε εναποτεθεί πρόδρομο υμένιο πυρηνοποίησης, χρησιμοποιήθηκαν σε αυτή την περίπτωση για την ανάπτυξη νανονημάτων. Καλά προσανατολισμένες δομές κάθετες στο υπόστρωμα με διάμετρο ~30 nm και μήκος μέχρι ~7 μm δημιουργήθηκαν με χρήση 0.04 Μ ZnAc, 0.02 M HMTA, 0.16 M PEI και 0.04 M NH4OH σε υδατικό διάλυμα στους 95 οC. H χρονική διάρκεια των πειραμάτων κυμάνθηκε στο διάστημα 1 – 24 h. Η τιμή του pH του διαλύματος ήταν περίπου 7. Ο προσανατολισμός των νανοδομών χειροτέρευε με αύξηση του μήκους τους καθώς κάμπτονταν και ενώνονταν με τα γειτονικά τους. Επομένως, για την βελτίωση της δομής τους βρέθηκε ότι είναι απαραίτητη η ανανέωση του διαλύματος κάθε ~2.30 h. Οι παραχθείσες νανοδομές εξετάστηκαν με ηλεκτρονική μικροσκοπία σάρωσης (SEM) και περίθλαση ακτίνων – Χ (XRD). Για την μελέτη των ατελειών στους κρυστάλλους του ZnO χρησιμοποιήθηκε η φασματοσκοπία Raman και η φασματοσκοπία φωτοφωταύγειας (Photoluminescence). Με την φασματοσκοπία Raman μελετήθηκαν οι τρόποι δόνησης των μορίων του υλικού, ενώ με τη φασματοσκοπία φωτοφωταύγειας η ύπαρξη ατελειών στον κρύσταλλο, όπως έλλειψη οξυγόνου, αντικατάσταση ψευδαργύρου με οξυγόνο, κλπ. / Zinc oxide (ZnO) is one of the most important low dimensional semiconducting oxides owing to the amazing variety of the nanostructures it can form by means of various synthesis routes. The most important methods are the vapor deposition and the chemical bath deposition. ZnO nanostructures have attracted considerable attention in view of several applications they encounter such as optics – optoelectronics, sensors, energy production, biomedical sciences, etc. Despite systematic research concerning the rational growth of ZnO nanostructures for over a decade, the establishment of an experimental methodology capable of providing specific morphologies of ZnO nanostructures in a reproducible way is still an open question. This is also one of the current research challenges because the resulting morphologies are characterized by different physical properties and are quite sensitive to small changes in experimental conditions. The current work is aimed at providing a systematic study of the role of various growth parameters on the morphological features and the optical properties of ZnO nanostructures. Growth was achieved by catalyst-assisted (Au) vapor transport at high temperature (VLS) and by solution chemistry (CBD). It is important to gain understanding about how certain parameters affect the morphology of the nanostructures, the size distributions of the diameters and their orientation relative to the substrate. High temperature evaporation methods, such as the vapor-liquid-solid mechanism, have been exploited for the controlled growth of ZnO nanostructures on various substrates. While Au is the most frequently used catalyst for growing ZnO nanowires, its morphological features on the substrate, which determine the size and shape of the nanostructures grown, are not yet methodically explored. In the current work, we investigated the details of thermal dewetting of Au films into nanoparticles on Si substrates. Au films of various thicknesses, h, ranging from 2 to 15 nm, were annealed under slow and fast rates at various temperatures and the morphological details of the nanoparticles formed were investigated. The vapor-liquid-solid method was employed to investigate the role of the Au nanoparticles on the growth details of ZnO nanowires. Efficient and high throughput growth of ZnO nanowires, for a given growth time, is realized in cases of thin Au films, i.e. when the thickness is lower than 10 nm. In the second case, the influence of a number of parameters such as the thickness of the seed layer, the reactants concentration, the existence of organic compounds, the growth time, etc. on the growth of ZnO nanowires on conducting glass substrates (FTO) was examined. After parameter optimization it was found that ZnO nanowires grown have excellent orientation, perpendicular to the substrate, while their diameter and length were found to be ~30 nm and ~7 μm, respectively. The best growth conditions were achieved using 0.04 Μ ZnAc, 0.02 M HMTA, 0.16 M PEI and 0.04 M NH4OH. The reaction temperature was kept at 95 οC for 1 h to 24 h. The pH value was ~ 7. The alignment of ZnO nanowires deteriorates when their length increases; therefore neighboring nanowires bend forming bundles. This shortcoming has been overcome by employing the renewal of the solution every 2.30 h. The structure of ZnO nanowires was investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Raman scattering was used to study defects of ZnO nanostructures. New Raman modes, in comparison to the bulk crystal, have been assigned to finite size effects and phonon confinement in the nanostructures. Photoluminescence spectroscopy provides evidence for the type of the defects such as oxygen vacancies, zinc interstitials etc.
522

Cadmium Free Buffer Layers and the Influence of their Material Properties on the Performance of Cu(In,Ga)Se2 Solar Cells

Hultqvist, Adam January 2010 (has links)
CdS is conventionally used as a buffer layer in Cu(In,Ga)Se2, CIGS, solar cells. The aim of this thesis is to substitute CdS with cadmium-free, more transparent and environmentally benign alternative buffer layers and to analyze how the material properties of alternative layers affect the solar cell performance. The alternative buffer layers have been deposited using Atomic Layer Deposition, ALD. A theoretical explanation for the success of CdS is that its conduction band, Ec, forms a small positive offset with that of CIGS. In one of the studies in this thesis the theory is tested experimentally by changing both the Ec position of the CIGS and of Zn(O,S) buffer layers through changing their gallium and sulfur contents respectively. Surprisingly, the top performing solar cells for all gallium contents have Zn(O,S) buffer layers with the same sulfur content and properties in spite of predicted unfavorable Ec offsets. An explanation is proposed based on observed non-homogenous composition in the buffer layer. This thesis also shows that the solar cell performance is strongly related to the resistivity of alternative buffer layers made of (Zn,Mg)O. A tentative explanation is that a high resistivity reduces the influence of shunt paths at the buffer layer/absorber interface. For devices in operation however, it seems beneficial to induce persistent photoconductivity, by light soaking, which can reduce the effective Ec barrier at the interface and thereby improve the fill factor of the solar cells. Zn-Sn-O is introduced as a new buffer layer in this thesis. The initial studies show that solar cells with Zn-Sn-O buffer layers have comparable performance to the CdS reference devices. While an intrinsic ZnO layer is required for a high reproducibility and performance of solar cells with CdS buffer layers it is shown in this thesis that it can be thinned if Zn(O,S) or omitted if (Zn,Mg)O buffer layers are used instead. As a result, a top conversion efficiency of 18.1 % was achieved with an (Zn,Mg)O buffer layer, a record for a cadmium and sulfur free CIGS solar cell. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 717
523

Exciton-polaritons in low dimensional structures

Pavlovic, Goran 17 November 2010 (has links) (PDF)
Some special features of polaritons, quasi-particles being normal modes of system of excitons interacting with photons in so called strong coupling regime, are theoretically and numerically analyze in low dimensional systems. In Chapter 1 is given a brief overview of 0D, 1D and 2D semiconductor structures with a general introduction to the polariton field. Chapter 2 is devoted to micro / nano wires. The so called whispering gallery modes are studied in the general case of an anisotropic systems as well as polariton formation in ZnO wires. Theoretical model is compared with an experiment. In the Chapter 3 Josephson type dynamics with Bose-Einstein condensates of polaritons is analyzed taking into account pseudospin degree of freedom. Chapter 4 start with an introduction to Aharonov-Bohm effect, as the best known represent of geometrical phases. An another geometrical phase - Berry phase, occurring for a wide class of systems performing adiabatic motion on a closed ring, is main subject of this section. We considered one proposition for an exciton polariton ring interferometer based on Berry phase effect. Chapter 5 concerns one 0D system : strongly coupled quantum dot exciton to cavity photon. We have discussed possibility of obtaining entangled states from a quantum dot embedded in a photonic crystal in polariton regime.
524

Modélisations multi-physiques de la génération piézoélectrique à l'aide de nanofils d'Oxyde de Zinc

Graton, Olivier 03 October 2012 (has links) (PDF)
Les progrès réalisés dans les processus de fabrication ont mené vers un contrôle de plus en plus accru des dimensions et de la composition chimique des nanostructures, permettant l'émergence de nouveaux dispositifs appelés Nanosystèmes ElectroMécaniques ou NEMS. Outre leurs propriétés physiques et leurs caractéristiques fonctionnelles originales, leurs dimensions réduites leurs confèrent un fonctionnement peu coûteux en énergie. Ainsi, l'utilisation de l'environnement de tels dispositifs comme source d'énergie est clairement envisageable. Afin de préserver les avantages liés aux dimensions des NEMS, le système de récupération d'énergie doit aussi présenter un volume réduit. Dans ce contexte, nous étudions le potentiel des nanofils de ZnO comme éléments actifs de micro et nanosystèmes de récupération d'énergie mécanique à travers la mise au point de deux modèles physiques de nanofils. L'originalité de ces deux modèles vient de la prise en compte du couplage entre les propriétés piezoélectriques et les propriétés semiconductrices du ZnO et de ses effets dans la conversion électromécanique de l'énergie. Dans un premier temps, nous avons développé un modèle semi-analytique d'un nanofil en flexion statique. Ce modèle permet la compréhension physique des mécanismes de la conversion de l'énergie. De plus, il met en évidence les effets du couplage piezo-semiconducteur et notamment le phénomène de masquage du potentiel. Dans un deuxième temps, nous proposons un modèle de microgénérateur basé sur un réseau de nanofils de ZnO en compression. Ce modèle utilise une approche de circuit à constantes localisées. Il permet une description dynamique du problème et l'estimation de la puissance fournie par le générateur à une charge externe sous l'effet d'une force mécanique. La formation d'un contact Schottky entre le sommet des nanofils et l'électrode supérieure et son influence sur le comportement électrique du générateur sont prises en compte. Ces deux approches sont complémentaires et sont une aide pour la compréhension physique du fonctionnement des nanofils comme transducteurs électromécaniques et pour l'optimisation des propriétés des nanofils en vue de leur utilisation comme éléments actifs de nano et microgénérateurs. Finalement, nous proposons quelques pistes de réflexions pour la synthèse de nanofils et leur intégration en microsystème ainsi que pour la réalisation et la caractérisation d'un dispositif de récupération d'énergie basé sur un réseau de nanofils.
525

Réalisation de cellules solaires nanostructurées à base de nanofils de ZnO. Matériaux et propriétés

Sanchez, Sylvia 10 September 2012 (has links) (PDF)
Les cellules solaires nanostructurées ont été développées pour réduire le coût du photovoltaïque et le rendre compétitif aux autres sources d'énergies. Dans ce but deux cellules solaires ont été étudié durant la thèse: la cellule " eta " (Extremely Thin Absorber) et la cellule hybride à polymères. Dans un premier temps, des couches 2D et nanofils de ZnO ont été réalisés par voie électrochimique sur des substrats verre/TCO (oxyde transparent et conducteur). Il est montré que la température du bain, la densité de charge et la concentration de l'électrolyte support (KCl) infleuncent la morphologie, composition, cristallisation et propriétés optiques des couches. Les films déposés à 0,1 M KCl et à T ≥ 50°C, présente de bonnes propriétés physico-chimiques. La couche 2D est ensuite utilisée pour la croissance des nanofils de ZnO et leurs dimensions sont ajustées avec la moprhologie et l'épaisseur de cette couche. L'électrolyte support et la densité de charge permettent également de contrôler les dimensions des nanofils. Dans un deuxième temps, les nanofils de ZnO ont été photo-sensibilisés par deux types d'absorbeurs : CuInS2 (CIS) et Cu2ZnSnS4 (CZTS). Ils ont été réalisés par différentes méthodes : SILAR (Successive Ion Layer Adsorption and Reaction), électrodépôt et dépôt de nanoparticules pré-synthétisées (pour CIS). Les films préparés par voie SILAR sont très uniformes autour des nanofils. Tandis que ceux réalisés par électrodépôt sont moins homogènes mais de très bonnes qualités cristallines. Grâce à la fonctionnalisation des nanofils, une couche de nanoparticules de CuInS2 très uniforme est déposée. Les cellules " eta " réalisées avec ces structures cœur/coquille montrent un effet photovoltaïque. Les films de ZnO électrodéposés ont été intégrés dans des cellules solaires hybrides à polymères sur substrats verres et plastiques. Ces cellules ont montré de bons rendements et une haute stabilité.
526

Synthesis, Characterization and Applications of Metal Oxide Nanostructures

Hussain, Mushtaque January 2014 (has links)
The main objective of nanotechnology is to build self-powered nanosystems that are ultrasmall in size, exhibit super sensitivity, extraordinary multi functionality, and extremely low power consumption. As we all know that 21st century has brought two most important challenges for us. One is energy shortage and the other is global warming. Now to overcome these challenges, it is highly desirable to develop nanotechnology that harvests energy from the environment to fabricate self-power and low-carbon nanodevices. Therefore a self-power nanosystem that harvests its operating energy from the environment is an attractive proposition. This is also feasible for nanodevices owing to their extremely low power consumption. One advantageous approach towards harvesting energy from the environment is the utilization of semiconducting piezoelectric materials, which facilitate the conversion of mechanical energy into electrical energy. Among many piezoelectric materials ZnO has the rare attribute of possessing both piezoelectric and semiconducting properties. But most applications of ZnO utilize either the semiconducting or piezoelectric property, and now it’s time to fully employ the coupled semiconducting-piezoelectric properties to form  the basis for electromechanically coupled nanodevices. Since wurtzite zinc oxide (ZnO) is structurally noncentral symmetric and has the highest piezoelectric tensor among tetrahedrally bonded semiconductors, therefore it becomes a promising candidate for energy harvesting applications. ZnO is relatively biosafe and biocompatible as well, so it can be used at large scale without any harm to the living environment. The synthesis of another transition metal oxide known as Co3O4 is also important due to its potential usage in the material science, physics and chemistry fields. Co3O4 has been studied extensively due to low cost, low toxicity, the most naturally abundant, high surface area, good redox, easily tunable surface and structural properties. These significant properties enable Co3O4 fruitful for developing variety of nanodevices. Co3O4 nanostructures have been focused considerably in the past decade due to their high electro-chemical performance, which is essential for developing highly sensitive sensor devices. I started my work with the synthesis of ZnO nanostructures with a focus to improve the amount of harvested energy by utilizing oxygen plasma treatment. Then I grow ZnO nanorods on different flexible substrates, in order to observe the effect of substrate on the amount of harvested energy. After that I worked on understanding the mechanism and causes of variation in the resulting output potential generated from ZnO nanorods. My next target belongs to an innovative approach in which AFM tip decorated with ZnO nanorods was utilized to improve the output energy. Then I investigated Co3O4 nanostructures though the effect of anions and utilized one of the nanostructure to develop a fast and reliable pH sensor. Finally to take the advantage of higher degree of redox chemistry of NiCo0O4 compared to the single phase of nickel oxide and cobalt oxide, a sensitive glucose sensor is developed by immobilizing glucose oxidase. However, there were problems with the mechanical robustness, lifetime, output stability and environmental adaptability of such devices, therefore more work is going on to find out new ways and means in order to improve the performance of fabricated nanogenerators and sensors.
527

Vapor Phase Growth of ZnO Single Crystals/Thin Films and Attempts for p-type Doping

Zhang, Xi 12 May 2014 (has links) (PDF)
The growth of ZnO single crystals and ZnO thin films on Si substrates by an open-system vapor phase method was studied in this thesis. The as-grown ZnO single crystals were investigated by means of photoluminescence (PL). Two unique emissions were observed in virgin and hydrogenated crystals. The up-to-now attempts for the p-type doping of ZnO were summarized and our doping studies were performed using nitrogen and antimony. The seed-free and open-system vapor phase method is a simple and low cost approach to grow good quality ZnO single crystals. The growth parameters, including flow rates of N2, H2, O2, and growth temperatures, have various influences on the crystal growth, and also on the optical properties of the as grown crystals. The as-grown crystals are c-axis oriented needle crystals, and the crystals typically have a maximum length of 40 mm and a maximum diameter of 1 mm. The needle-shaped crystals are n-type with main donors due to Al, Ga, and In impurities, as determined from the PL spectra. Two unidentified PL emission lines (P1 at 3.3643 eV and P2 at 3.3462 eV) are observed in our vapor phase grown ZnO single crystals. P1 is attributed to the recombination of an exciton bound to a shallow donor,which has a binding energy of 42.2 meV. Hydrogenation of the as-grown ZnO single crystal leads to the appearance of the P2 line and a great reduction of the P1 line. Subsequent isochronal annealing in the ambient atmosphere leads to gradual reduction of P2 and the reappearance of P1. The PL measurements indicate that hydrogen is involved in the defect origins of the P2 line. ZnO thin films were deposited on Si substrates by the vapor phase method. Three different types of configurations with alternative source materials and oxidizers were employed and compared. It is demonstrated that, methods with lower growth temperatures are easier to deposit homogenous ZnO films on Si substrate. Donor-acceptor-pair (DAP) transition at 3.245 eV and its phonon replicas were observed in the PL spectra of the thin films, which are grown by the hydrogen-free vapor phase method. The appearance of DAP transition indicates the presence of acceptor in the films. The long-standing challenge of p-type doping in ZnO is mainly attributed to the low valence band maximum (VBM) at the absolute energy scale, the spontaneous formation of compensating defects and the lack of appropriate acceptors with small ionization energy. Two attempts for the p-type doping of ZnO were performed by nitrogen diffusion into ZnO single crystals from plasma after the growth or by in-situ doping antimony during the growth of ZnO films. No hole conductivity could however be achieved in our doped samples. / In dieser Arbeit wurde das Wachstum von ZnO-Einkristallen und Dünnfilmschichten auf Si durch chemische Gasphasenabscheidung in einem offenen System untersucht. Die hergestellten ZnO-Einkristalle wurden mit Photolumineszenzmessungen (PL) untersucht. Es konnten sowohl in unbehandelten als auch in mit Wasserstoff behandelten Proben zwei charakteristische Linien beobachtet werden. Sowohl die bisherigen Versuche zur p-Typ Dotierung von ZnO als auch die in dieser Arbeit durchgeführten Versuche mit Stickstoff und Antimon werden zusammengefasst und präsentiert. Die Keimkristall-freie Gasphasenabscheidung (CVD) in offenen Systemen ist eine einfache und kostengünstige Methode zur Herstellung von qualitativ hochwertigen ZnO-Einkristallen. Die Wachstumsparameter, einschließlich der Flussraten von N2, H2 und O2 sowie der Wachstumstemperatur beeinflussen das Kristallwachstum sowie die optischen Eigenschaften der hergestellten Kristalle. Die hergestellten Kristalle wachsen typischerweise als entlang der c-Achse orientierte Nadeln mit Längen von bis zu 40 mm und Durchmessern von bis zu 1 mm. Die nadelförmigen Kristalle besitzen eine n-Typ Dotierung, welche hauptsächlich durch Verunreinigung mit Al, Ga und In verursacht wird. Zwei bisher nicht identifizierte PL-Linien (P1 bei 3,3643 eV und P2 bei 3,3462 eV) wurden in den hergestellten Kristallen beobachtet. P1 wird der Rekombination von Exzitonen an flachen Donatoren mit einer Bindungsenergie von 42,2 meV zugeordnet. Eine Wasserstoffbehandlung der hergestellten Kristalle führt zum Erscheinen der P2-Linie und einer starken Unterdrückung der P1-Linie. Anschließende isochronische Temperung in Luft führt zu einer schrittweisen Reduzierung der Intensität der P2-Linie und zu einer Verstärkung der P1-Linie. Photolumineszenzmessungen weisen auf eine Korrelation von P2 mit Wasserstoff hin. Zusätzlich wurden mit der CVD-Methode dünne ZnO-Schichten auf Si-Substraten abgeschieden. Drei unterschiedliche Konfigurationen mit verschiedenen Ausgangsmaterialien (ZnO-Pulver bw. Zn-Pulver) und verschiedenen Oxidationsmitteln (O2 bzw. Wasser) wurden untersucht und verglichen. Es wird gezeigt, dass mit den Konfigurationen mit geringerer Wachstumstemperatur am einfachsten homogene ZnO-Schichten auf Si abgeschieden werden können. Ein Donator-Akzeptor-Paar-Übergang (DAP) bei 3,245 eV und die dazugehörigen Phononenrepliken wurden in den Schichten beobachtet, welche in einer Wasserstoff-freien Konfiguration abgeschieden wurden. Diese DAP-Übergänge sind ein Hinweis auf die Anwesenheit von Akzeptoren. Die seit langem bestehende Herausforderung der p-Typ-Dotierung von ZnO hat ihre Wurzeln hauptsächlich in dem niedrig liegenden Valenzbandmaximum (VBM) auf der absoluten Energieskala, der spontanen Bildung von kompensierenden Defekten sowie dem Mangel an geeigneten Akzeptoren mit geringer Ionisierungsenergie. Zwei Versuche zur p-Typ-Dotierung von ZnO durch Behandlung der Kristalle mit N-Plasma bzw. durch in-situ Dotierung mit Sb während des Kristallwachstums wurden durchgeführt. Allerdings konnte damit keine nachweisbare Löcherleitung in den behandelten Proben erreicht werden.
528

Acoustics in nanotechnology: manipulation, device application and modeling

Buchine, Brent Alan 19 December 2007 (has links)
Advancing the field of nanotechnology to incorporate the unique properties observed at the nanoscale into functional devices has become a major scientific thrust of the 21st century. New fabrication tools and assembly techniques are required to design and manufacture devices based on one-dimensional nanostructures. Three techniques for manipulating nanomaterials post-synthesis have been developed. Two of them involve direct contact manipulation through the utilization of a physical probe. The third uses optically generated surface acoustic waves to reproducibly control and assemble one-dimensional nanostructures into desired locations. The nature of the third technique is non-contact and limits contamination and defects from being introduced into a device by manipulation. While the effective manipulation of individual nanostructures into device components is important for building functional nanosystems, commercialization is limited by this one-device-at-a-time process. A new approach to nanostructure synthesis was also developed to site-specifically nucleate and grow nanowires between two electrodes. Integrating synthesis directly with prefabricated device architectures leads to the possible mass production of NEMS, MEMS and CMOS systems based upon one-dimensional nanomaterials. The above processes have been pursued to utilize piezoelectric ZnO nanobelts for applications in high frequency electronic filtering as well as biological and chemical sensing. The high quality, single crystal, faceted nature of these materials make them ideal candidates for studying their properties through the designs of a bulk acoustic resonator. The first ever piezoelectric bulk acoustic resonator based on bottom-up synthesized belts will be demonstrated. Initial results are promising and new designs are implemented to scale the device to sub-micron dimensions. Multiple models will be developed to assist with design and testing. Some of models presented will help verify experimental results while others will demonstrate some of the problems plaguing further investigations.
529

Band Alignment Between ZnO-Based and Cu(In,Ga)Se2 Thin Films for High Efficiency Solar Cells

Platzer-Björkman, Charlotte January 2006 (has links)
Thin-film solar cells based on Cu(In,Ga)Se2 contain a thin buffer layer of CdS in their standard configuration. In order to avoid cadmium in the device for environmental reasons, Cd-free alternatives are investigated. In this thesis, ZnO-based films, containing Mg or S, grown by atomic layer deposition (ALD), are shown to be viable alternatives to CdS. The CdS is an n-type semiconductor, which together with the n-type ZnO top-contact layers form the pn-junction with the p-type Cu(In,Ga)Se2. From device modeling it is known that a buffer layer conduction band (CB) position of 0-0.4 eV above that of the Cu(In,Ga)Se2 layer is consistent with high photovoltaic performance. For the Cu(In,Ga)Se2/ZnO interface this position is measured by photoelectron spectroscopy and optical methods to –0.2 eV, resulting in increased interface recombination. By including sulfur into ZnO, a favorable CB position to Cu(In,Ga)Se2 can be obtained for appropriate sulfur contents, and device efficiencies of up to 16.4% are demonstrated in this work. From theoretical calculations and photoelectron spectroscopy measurements, the shift in the valence and conduction bands of Zn(O,S) are shown to be non-linear with respect to the sulfur content, resulting in a large band gap bowing. ALD is a suitable technique for buffer layer deposition since conformal coverage can be obtained even for very thin films and at low deposition temperatures. However, deposition of Zn(O,S) is shown to deviate from an ideal ALD process with much larger sulfur content in the films than expected from the precursor pulsing ratios and with a clear increase of sulfur towards the Cu(In,Ga)Se2 layer. For (Zn,Mg)O, single-phase ZnO-type films are obtained for Mg/(Zn+Mg) < 0.2. In this region, the band gap increases almost linearly with the Mg content resulting in an improved CB alignment at the heterojunction interface with Cu(In,Ga)Se2 and high device efficiencies of up to 14.1%.
530

Etude des moyens de lithographie haute résolution pour la fabrication de résonateurs à ondes élastiques de surface : application aux sources embarquées

Salut, Roland 15 November 2011 (has links) (PDF)
Le but de ce travail de thèse est d'étudier les moyens de lithographie haute résolution pour la fabrication de résonateurs à ondes élastiques de surface, et de l'illustrer à travers la réalisation de sources de fréquences fonctionnant au-delà du GigaHertz. Dans un premier temps nous abordons les différents dispositifs fondés sur les ondes élastiques de surface puis les sources de fréquence (instabilités caractéristiques) et fixons les objectifs de l'étude au travers notamment d'un état de l'art. Dans un second temps, nous présentons les moyens de lithographie étudiés dans le cadre de ce travail, à savoir la lithographie électronique, la gravure par faisceau d'ions focalisés, la lithographie UV par projection et la lithographie par nano-impression. Pour chacune d'entre elles, nous détaillons le principe de fonctionnement et montrons, notamment grâce à des simulations, leur intérêt et leurs limitations. Ensuite, nous présentons la fabrication et la caractérisation de résonateurs sur différents types de substrats ayant des propriétés innovantes par rapport à nos applications. Le PZT élaboré par épitaxie, présentant des coefficients de couplage élevés (plusieurs pourcents) couplés à une granulométrie fine et une orientation cristalline selon l'axe 001. Le diamant, qui permet d'atteindre des vitesses de phase de l'ordre de 10000 m.s-1, soit une vitesse deux fois supérieure à celles des ondes transverses sur substrat de quartz, quartz que nous avons également étudié afin de rechercher de nouveaux points de fonctionnement à haute fréquence. Pour chaque matériau, nous identifions un ou plusieurs moyen(s) de lithographie qui nous permettent de fabriquer les résonateurs. Les étapes de conception, de fabrication et de caractérisation sont décrites en détail. La dernière partie du manuscrit consiste à exposer les caractéristiques des oscillateurs fondés sur les résonateurs à haut produit Qf ainsi fabriqués (Qf > 5.1012). Nous reportons les résultats obtenus à des fréquences de 1,5 GHz (sur quartz) et à 3 GHz (sur diamant nanocristallin). Le bruit de phase à 10 kHz de la porteuse est compris entre -100 et -110 dBc.Hz-1, et le bruit plancher est de -160 dBc.Hz-1. Nous concluons en donnant des pistes afin d'améliorer ces caractéristiques

Page generated in 0.0182 seconds