• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Custom Beam Shaping for High-Power Fiber Laser Welding

Victor, Brian M. 26 June 2009 (has links)
No description available.
22

Avaliação da formação de sulfetos insolúveis na remediação de solos contaminados com cádmio e zinco / Evaluation of the insoluble sulfides formation in the remediation of contaminated soils with cadmium and zinc

Machado, Jeane Maria Cunha 21 February 2013 (has links)
A preocupação com a contaminação por metais reflete na busca de metodologias de recuperação de solos. O objetivo deste trabalho foi compreender os mecanismos de formação e oxidação dos sulfetos em solos e propor uma metodologia de imobilização de metais pela formação de sulfeto insolúvel e posterior fitoextração. Três experimentos foram conduzidos em solos contaminados com Cd e Zn. O primeiro teve como objetivo definir a concentração de (NH4)2S necessária para a formação dos sulfetos metálicos. Os resultados confirmam que a adição de sulfeto reduz a disponibilidade de Cd e Zn em Argissolos Vermelho-Amarelos distróficos e que concentrações de sulfetos superiores a 30 e 60 mmol kg-1, respectivamente para Cd e Zn, não melhora a capacidade de imobilização dos metais. O segundo experimento objetivou avaliar a influência da matéria orgânica, pH, tempo e ambiente na imobilização de Cd e Zn associado ao sulfeto. Foi demonstrado que a adição de matéria orgânica reduz a concentração de Cd solúvel e mantém o pH em faixa adequada às plantas. Para o Zn, a matéria orgânica não apresentou efeito significativo, prevalecendo o efeito do sulfeto. O aumento do pH, através da adição de carbonatos aumenta a imobilização do Cd e Zn em presença de sulfeto, influenciado pela formação dos respectivos hidróxidos. A exposição dos sulfetos metálicos a um ambiente oxidante reduz a imobilização de Cd e Zn devido à sua oxidação e consequente dissociação molecular. O terceiro experimento, desenvolvido em casa de vegetação, avaliou a disponibilidade de Cd e Zn e sua toxidez em Phaseolus vulgaris L. (feijão), utilizando a melhor dose de sulfeto com adição de matéria orgânica para obter maior eficiência na imobilização. A produção de massa seca da planta foi superior em solos que não continham sulfeto, o que indica fitotoxicidade. Concluímos que soluções de sulfeto podem ser utilizadas para imobilização temporária de Cd e Zn em solos contaminados, entretanto sua aplicação combinada à fitorremediação necessita de maiores estudos / The development of remediation of soil degraded areas methodologies reflects the concern with the metal contamination. The aim of this work was to understand the formation mechanisms and oxidation of sulfides in soils and propose a metal immobilization procedure by precipitation an insoluble sulfide and subsequent phytoextraction. Three experiments were conducted in contaminated soils with Cd and Zn. The first aimed to determine the (NH4)2S concentration necessary for the metallic sulfide formation. The results confirm that the sulfide addition reduces the Cd and Zn available in red-yellow dystrophic Argisoil and sulfide concentration above 30 and 60 mmol kg-1, respectively for Cd and Zn, not improve the metals immobilizations. The second experiment evaluated the organic matter, pH, time and atmosphere influence in the Cd- and Zn-sulfide immobilization. The addition of organic matter reduces the concentration of soluble Cd and maintaining the pH in adequate range for plants. For Zn, organic matter didn\'t show significant effect, prevailing the sulfide effect. The increase in pH by carbonates addition increases the Cd and Zn immobilizations in the sulfide presence. The exposure of metallic sulfide to an oxidizing atmosphere reduces Cd and Zn immobilization. The third experiment, developed in greenhouse, evaluated the Cd e Zn toxicity in Phaseolus vulgaris L. (bean) by using the best sulfide dose and addition of organic matter. The dry matter production was higher in soils without sulfide, indication phytotoxicity. We conclude that sulfide solutions can be used for Cd and Zn temporary immobilization in contaminated soils, however the application combined with phytoremediation needs further studies
23

Growth and optical properties of ZnS and ZnSSe nanostructures. / Growth and optical properties of zinc sulfide and zinc sulfoselenide nanostructures / ZnS和ZnSSe納米結構的生長和光學性質 / CUHK electronic theses & dissertations collection / Growth and optical properties of ZnS and ZnSSe nanostructures. / ZnS he ZnSSe na mi jie gou de sheng chang he guang xue xing zhi

January 2009 (has links)
In addition, we have studied the growth conditions and the properties of ZnSSe alloy nano-tetrapods grown by chemical vapor deposition. Different from the ZnSSe nanowires synthesized by MOCVD, the ZnSSe nano-tetrapods are of hexagonal structure. We observed a wavelength-tunable near band gap luminescence in the UV-blue region from this nanostructurally-designed system. / Recently, semiconductor nanostructures have attracted much attention because they are potentially useful as fundamental building blocks in nanodevices. As an important member of group II-VI semiconductors, ZnS and its alloys with ZnSe are particularly important for optical applications in the UV-blue region . Thus, we concentrated on the synthesis of ZnS, ZnSe and ZnSSe nanostructures and studied their optical properties. / Vertically-aligned ZnSe nanowires were also synthesized by MOCVD using Ag and Ga nanoparticles as catalysts. In the photoluminescence spectra from Ag or Ga catalyzed ZnSe nanowires, we observed recombination of excitons bound to substitutional Ag or Ga impurities respectively, which indicates that Ag and Ga have been doped into ZnSe nanowires in our experiments. / We are among the first group to grow vertically well-aligned ZnSSe alloy nanowires of controllable composition. Most of ZnSSe nanowires were found to have a cubic structure. We also found a compositional relationship between the nanowires and precursors, which is useful for predicting the lattice constant and band-gap emission energy of ZnSSe nanowires. / ZnS nanowire arrays were fabricated on the GaAs (100), (110) (311)A and (111)B substrates by metal organic chemical vapor deposition (MOCVD) using Ag, Au and Ga particles as catalysts. Their orientation was adjusted by changing the crystallographic orientation of the substrate. Moreover, Ga was doped into ZnS nanowires, when Ga nanoparticles serve as catalysts. / Liang, Yao = ZnS和ZnSSe納米結構的生長和光學性質 / 梁瑤. / Adviser: Hank Suikong. / Source: Dissertation Abstracts International, Volume: 72-11, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Liang, Yao = ZnS he ZnSSe na mi jie gou de sheng chang he guang xue xing zhi / Liang Yao.
24

Avaliação da formação de sulfetos insolúveis na remediação de solos contaminados com cádmio e zinco / Evaluation of the insoluble sulfides formation in the remediation of contaminated soils with cadmium and zinc

Jeane Maria Cunha Machado 21 February 2013 (has links)
A preocupação com a contaminação por metais reflete na busca de metodologias de recuperação de solos. O objetivo deste trabalho foi compreender os mecanismos de formação e oxidação dos sulfetos em solos e propor uma metodologia de imobilização de metais pela formação de sulfeto insolúvel e posterior fitoextração. Três experimentos foram conduzidos em solos contaminados com Cd e Zn. O primeiro teve como objetivo definir a concentração de (NH4)2S necessária para a formação dos sulfetos metálicos. Os resultados confirmam que a adição de sulfeto reduz a disponibilidade de Cd e Zn em Argissolos Vermelho-Amarelos distróficos e que concentrações de sulfetos superiores a 30 e 60 mmol kg-1, respectivamente para Cd e Zn, não melhora a capacidade de imobilização dos metais. O segundo experimento objetivou avaliar a influência da matéria orgânica, pH, tempo e ambiente na imobilização de Cd e Zn associado ao sulfeto. Foi demonstrado que a adição de matéria orgânica reduz a concentração de Cd solúvel e mantém o pH em faixa adequada às plantas. Para o Zn, a matéria orgânica não apresentou efeito significativo, prevalecendo o efeito do sulfeto. O aumento do pH, através da adição de carbonatos aumenta a imobilização do Cd e Zn em presença de sulfeto, influenciado pela formação dos respectivos hidróxidos. A exposição dos sulfetos metálicos a um ambiente oxidante reduz a imobilização de Cd e Zn devido à sua oxidação e consequente dissociação molecular. O terceiro experimento, desenvolvido em casa de vegetação, avaliou a disponibilidade de Cd e Zn e sua toxidez em Phaseolus vulgaris L. (feijão), utilizando a melhor dose de sulfeto com adição de matéria orgânica para obter maior eficiência na imobilização. A produção de massa seca da planta foi superior em solos que não continham sulfeto, o que indica fitotoxicidade. Concluímos que soluções de sulfeto podem ser utilizadas para imobilização temporária de Cd e Zn em solos contaminados, entretanto sua aplicação combinada à fitorremediação necessita de maiores estudos / The development of remediation of soil degraded areas methodologies reflects the concern with the metal contamination. The aim of this work was to understand the formation mechanisms and oxidation of sulfides in soils and propose a metal immobilization procedure by precipitation an insoluble sulfide and subsequent phytoextraction. Three experiments were conducted in contaminated soils with Cd and Zn. The first aimed to determine the (NH4)2S concentration necessary for the metallic sulfide formation. The results confirm that the sulfide addition reduces the Cd and Zn available in red-yellow dystrophic Argisoil and sulfide concentration above 30 and 60 mmol kg-1, respectively for Cd and Zn, not improve the metals immobilizations. The second experiment evaluated the organic matter, pH, time and atmosphere influence in the Cd- and Zn-sulfide immobilization. The addition of organic matter reduces the concentration of soluble Cd and maintaining the pH in adequate range for plants. For Zn, organic matter didn\'t show significant effect, prevailing the sulfide effect. The increase in pH by carbonates addition increases the Cd and Zn immobilizations in the sulfide presence. The exposure of metallic sulfide to an oxidizing atmosphere reduces Cd and Zn immobilization. The third experiment, developed in greenhouse, evaluated the Cd e Zn toxicity in Phaseolus vulgaris L. (bean) by using the best sulfide dose and addition of organic matter. The dry matter production was higher in soils without sulfide, indication phytotoxicity. We conclude that sulfide solutions can be used for Cd and Zn temporary immobilization in contaminated soils, however the application combined with phytoremediation needs further studies
25

Propriedades ópticas e estruturais de óxido de zinco contendo enxofre / Structural and optical properties of sulfur-containing zinc oxide

Bosshard, Gabriela Zanotto, 1986- 22 August 2018 (has links)
Orientador: Fernando Aparecido Sigoli / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-22T05:08:39Z (GMT). No. of bitstreams: 1 Bosshard_GabrielaZanotto_M.pdf: 4132378 bytes, checksum: abfa0f7115fb10b1aa31e7b1e9367ef8 (MD5) Previous issue date: 2012 / Resumo: O objetivo deste projeto foi investigar a síntese de óxido de zinco contendo enxofre obtido a partir de sulfeto de zinco nas fases wurtzita (hexagonal) e blenda de zinco (cúbica), assim como fazer a caracterização e estudar as alterações estruturais e ópticas dos materiais sintetizados e compará-las às propriedades do óxido de zinco sintetizado a partir de hidroxicarbonato de zinco. O método de síntese utilizado permite a obtenção de sulfeto de zinco hexagonal ou cúbico a baixa temperatura, permitindo um estudo comparativo da influência da estrutura cristalina do sulfeto de zinco na formação do óxido de zinco. Os estudos por difração de raios X mostram que há leve variação nos parâmetros de rede do material obtido, principalmente quando a síntese parte da fase hexagonal do ZnS. Somado a isso, a análise da luminescência dos materiais obtidos mostra emissão em torno de 520 nm, que pode ser atribuída a transição eletrônica entre defeitos de Frenkel (Zni e VZn") que foram formados a temperaturas inferiores à requerida para a formação deste tipo de defeito, indicando, portanto alterações na rede do óxido de zinco contendo enxofre. / Abstract: This project aimed to investigate the synthesis of sulfur-containing zinc oxide obtained from zinc sulfide in the wurtzite (hexagonal) or zinc blende (cubic) phases, in order to study possible changes in the structural and optical properties of the obtained, material which were compared to the properties of zinc oxide synthesized from zinc hydroxicarbonate. The used method of synthesis allowed obtaining zinc sulfide hexagonal or cubic at low temperature and therefore comparative studies of the influence of crystalline structure of zinc sulfide in the formation of zinc oxide was possible. X-ray diffraction data show that there is a slight variation in the lattice parameters of the obtained material, especially in the material synthesized from hexagonal ZnS. In addition to that, luminescence emission around 520 nm, assigned to the electronic transition among Frenkel defects (Zni and VZn"), indicate changes in the network of the sulfur-containing zinc oxide, since this type of defect is expected to be formed at temperatures above the ones used in the present work. / Mestrado / Quimica Inorganica / Mestra em Química
26

Heterojunctions of Zinc Selenide and Zinc Sulfide on Titanium Oxide Nano Particles and Their Photocatalyses

Shih, Tsung-Hsiang 22 December 2006 (has links)
High quality ammonium oxofluorotitanate discoid crystal is successfully grown on glass with an aqueous solution of ammonium hexafluorotitanate and boric acid at the molar ratio of 0.6. The concentration of hydrofluoric acid is less on the glass substrate surface and enhances the ammonium oxofluorotitanate nucleation growth. The growth rate is much higher than that grown on dioctadecyldimethylammonium. From the examinations of X-ray diffraction and high-resolution transmission electron microscopy, the crystal shows high crystalline quality and uniformity. Each titanium oxide octahedral is linked with fluorine and nitrogen atoms. Therefore, ammonium oxofluorotitanate has high potential to be thermally decomposed into high crystalline fluorine and nitrogen co-doped titanium oxide. A simple process for the preparation of nanocrystalline anatase phase titanium oxide converted from ammonium oxofluorotitanate by thermal treatment was developed. The nanocrystalline anatase phase titanium oxide shows a large bandgap reduction due to the co-doping of high concentrations of fluorine and nitrogen. Due to the excellent nanocrystalline quality and the co-doping of higher concentrations of fluorine and nitrogen at the thermal treatment temperature of 800 OC, it is 1.3 times the photocatalytic activities of P-25 due to the visble region usage of Hg lamp light source. The 11.2 times the visible photocatalytic activities of P-25 using blue light-emitting diode as the light source is obtained from thermal treatment temperature of 600 OC. There is one to one correspondence between carrier lifetime and photocatalytic activity. As a result, a highly reactive and visible-light-driven photocatalysis is achieved. The heterostructure of zinc selenide/titanium oxide and zinc sulfide/titanium oxide were prepared by metal-organic chemical vapor deposition on the above-prepared titanium oxide. The energy bandgap of zinc sulfide is much larger than that of titanium oxide and can act as a window for titanium oxide. It would not hinder titanium oxide absorption and preserve the role of fluorine and nitrogen co-doping. The energy bandgap of zinc selenide is near the maximum intensity of solar spectrum and acts as a sensitizer of titanium oxide. The lifetime of electron and hole pairs of heterostructure are about 240 and 207 nsec, which are longer than 65 nsec of titanium oxide prepared at 800 oC thermal treatment. Their photocatalytic activities are further improved to 2.0 and 1.5 times higher than that of commercial P-25. The photocatalysis of titanium oxide is very sensitive to the surface states. Titanium oxide surface defects can act as trapping sites for photo-induced holes and facilitate the separation of photo-induced carriers. Zinc selenide and zinc sulfide can passivate the surface well. It may say that titanium oxide surface defects removal has a negative impact. The density, height, diameter, PL wavelength and intensity of zinc selenide self-assembled quantum dots grown on zinc sulfide/gallium arsenide with the zinc sulfide thickness from 15 to 160 nm are studied. For a fixed 30 sec zinc selenide self-assembled quantum dots growth, it cannot be formed with the zinc sulfide thickness below 15 nm due to the close lattice match between zinc sulfide and gallium arsenide. The zinc sulfide/gallium arsenide is fully lattice relaxed with the zinc sulfide thickness higher than 130 nm examined by X-ray diffraction. The higher quality and density of zinc selenide self-assembled quantum dots can be obtained on zinc sulfide/gallium arsenide with the zinc sulfide thickness far beyond its critical thickness. The maximum zinc selenide self-assembled quantum dots density of 4.9 x 109 cm-2 with the strongest photoluminescence intensity is obtained at the zinc sulfide/gallium arsenide thickness of 130 nm. Clusters are formed on the surface of zinc selenide/gallium arsenide. The selenium segregation is the main mechanism for the formation of clusters. The dislocations will enhance the selenium segregation. Higher zinc selenide cluster corresponds to higher density of dislocations. The non-spherical cluster is formed from the mergence of the two clusters. High quality zinc oxide rods and zinc hydroxide slices are successfully grown on gallium arsenide with the aqueous solution of zinc nitrate and hexamethylenetetramine. The growth can be controlled by the appropriate nitric acid concentration incorporation in the solution. After thermal annealing, the zinc oxide slices transformed from zinc hydroxide slices can contribute much higher photocatalytic activity to 1.2 times to P-25.
27

Near-Infrared Cu-In-Se-Based Colloidal Nanocrystals via Cation Exchange

Lox, Josephine F. L., Dang, Zhiya, Dzhagan, Volodymyr, Spittel, Daniel, Martín-García, Beatriz, Moreels, Iwan, Zahn, Dietrich R.T., Lesnyak, Vladimir 17 December 2019 (has links)
We developed a three-step colloidal synthesis of near-infrared active Cu-In-Se (CISe)/ZnS core/shell nanocrystals (NCs) via a sequential partial cation exchange. In the first step binary highly copper deficient Cu2‒xSe NCs were synthesized, followed by a partial cation exchange of copper to indium ions yielding CISe NCs. In order to enhance the stability and the photoluminescence (PL) properties of the NCs, a subsequent ZnS shell was grown, resulting in CISe/ZnS core/shell NCs. These core/shell hetero-NCs exhibited a dramatic increase in size and a restructuring to trigonal pyramidal particles. The reaction parameters, e.g. the Cu:Se-ratio, the temperature and the time were carefully tuned enabling a distinct control over the size and the composition of the NCs. By varying only the size of the CISe/ZnS NCs (from 9 to 18 nm) the PL spectra could be tuned covering a wide range with maxima from 990 nm to 1210 nm. Thus, in these experiments we demonstrate a clear dependence of the optical properties of these materials on their size and extend the PL range of CISe-based nanoparticles further to the infrared part of the spectrum. Furthermore, the relatively large size of these NCs allows their detailed structural analysis via electron microscopy techniques, which is particularly challenging in the case of small particles and especially important to relate the size, composition and crystal structure to their optoelectronic properties.
28

Synthesis of stable and non-cadmium containing quantum dots conjugated with folic acid for imaging of cancer cells / Synthèse de quantum dots stables et sans cadmium conjugués à l’acide folique pour l’imagerie de fluorescence de cellules cancéreuses

Geszke-Moritz, Malgorzata 28 October 2011 (has links)
Les Quantum Dots (QDs) sont des particules cristallines de semi-conducteur ou du métal de forme sphérique et de dimension nanométrique. L'intérêt majeur des QDs réside dans leur grande adaptabilité à de nombreuses applications biologiques.Le but de mon travail était de développer une nouvelle classe de QDs de faible toxicité afin de les utiliser pour la bio-imagerie des cellules cancéreuses. Pour cela, il est nécessaire de préparer des sondes hydrosolubles, photostables, biocompatibles, de luminescence élevée et possédant une faible toxicité. La synthèse des cœurs de type ZnS and ZnSe dopés au manganèse ou au cuivre et stabilisés par l’acide 3-mercapropropionique ou par le 1-thioglycérol a été réalisée par la voie hydrothermale. Les techniques analytiques de caractérisation utilisées sont la spectroscopie UV-visible, la spectroscopie de fluorescence, la diffraction des rayons X (XRD), la spectroscopie photoélectronique de rayon X (XPS), la microscopie électronique à transmission (TEM), la diffusion dynamique de la lumière DLS, la spectroscopie infra-rouge (IR), et la résonance paraélectronique (RPE). La toxicité des QDs a été déterminée sur des cellules cancéreuses. Les différents test de cytotoxicité (MTT, XTT et ferrous oxidation-xylenol orange) ont été réalisés. Finalement, les QDs de type ZnS:Mn conjugués à l’acide folique ont été utilisés pour la bio-imagerie des cellules cancéreuses par le biais d’une excitation biphotonique / Semiconductor QDs are tiny light-emitting crystals, and are emerging as a new class of fluorescent labels for medicine and biology. The aim of this work was to develop a new class of non-toxic QDs probes with essential attributes such as water dispersibility, photostability, biocompatibility, high luminescence and possible excitation with low-energy visible light, using simple processing method. Such nanoprobes could be used for bio-imaging of cancer cells. In the performed studies, I focused on ZnS and ZnSe QDs as they are cadmium-free and might be excited biphotonically.The synthesis protocols of ZnS and ZnSe QDs doped with two ions such as Mn or Cu and stabilized by 3-mercaptopropionic acid or 1-thioglycerol were established, followed by NCs characterization (diameter, surface charge, photophysical properties, …) using analytical techniques such as spectrophotometry UV-vis, fluorimetry, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering (DLS), infra-red analysis (FT-IR), thin layer chromatography (TLC) and electron paramagnetic resonance (EPR). The cytotoxicity of synthesized bare and conjugated NPs was evaluated on cancer cell lines using MTT, XTT and ferrous oxidation-xylenol orange assay.Finally, chosen well fluorescent and weakly toxic types of as-prepared and characterized QDs were used for bio-imaging of cancer cells. In these experiments, FA-functionalized NCs were excited biphotonically. The performed experiments showed the potential of QDs as cancer cells fluorescent markers and that they accumulate around the cell nuclei
29

Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods

Yuvaraj, D 07 1900 (has links)
In recent years, there has been growing interests on II-VI semiconductor nanostructures, which are suitable for applications in electronics and optoelectronic devices such as solar cells, UV lasers, sensors, light emitting diodes and field emission displays. II-VI semiconductor nanostructures with different morphologies such as wires, belts, rods, tubes, needles, springs, tetrapods, plates, hierarchical structures and so on, have been widely grown by vapor transport methods. However the process conditions used for the growth of nanostructures still remains incompatible for device fabrication. The realization of practical nanoscale devices using nanostructured film depends mainly on the availability of low cost and lower processing temperatures to manufacture high purity nanostructures on a variety of substrates including glass and polymer. In this thesis work, studies have been made on the growth and characterization of II-VI semiconductor nanostructures prepared at room temperature, under high vacuum, without employing catalysts or templates. (i) ZnO nanostructured films with different morphology such as flowers, needles and shrubs were deposited at room temperature on glass and polymer substrates by plasma assisted reactive process. (ii) Zn/ZnO core/shell nanowires were grown on Si substrates under optimized oxygen partial pressure. Annealing of this core shell nanowire in high vacuum resulted in the formation of ZnO nanocanals. (iii) ZnS and ZnSe nano and microstructures were grown on Si substrates under high vacuum by thermal evaporation. The morphology, structural, optical properties and composition of these nano and microstructures were investigated by XRD, SEM, TEM, Raman, PL and XPS. The growth mechanism behind the formation of the different nanostructures has been explained on the basis of vapour-solid (VS) mechanism.
30

Contribution à la recherche d'un modèle de gestion d'un passif envronnemental issu d'un traitement métallurgique des minerais sulfurés cuivre zinc en République Démocratique du Congo / Contribution to research of a management model of an environmental passive from a metallurgical processing of copper zinc sulphides ores Democratic Republic of Congo

Tshibanda Kabumana, Dieudonne 16 November 2012 (has links)
Ce travail traite d’un problème de pollution liée à la présence de métaux de base dans des passifs environnementaux issus d’un traitement métallurgique des minerais sulfureux cuivre – zinc provenant de la mine de Kipushi en République Démocratique du Congo. L’objectif principal de ce travail a été d’arriver à proposer des scénarios de gestion durable au passif environnemental de la filière présentant les risques environnementaux les plus élevés. Pour cela, on a d’abord procédé à une identification des différents problèmes environnementaux tout au long de la filière de traitement sur les quatre sites d’exploitation. Ensuite on a prélevé des échantillons puis procéder par des tests de disponibilité à la lixiviation à l’eau déminéralisée pour évaluer les fractions solubles des métaux de base présents et aussi par des tests de conformité de mise en décharge afin de classer ces rejets conformément à la directive européenne 2003-33-CE. Ainsi, les rejets Ex – UZK ont été identifiés comme les plus dangereux de la filière au regard de cette directive, car les quantités lixiviées de cuivre et de zinc dans ces rejets ont dépassé largement les limites fournies par la directive, et donc ils ne peuvent même pas être mis en décharge de classe I sans traitement métallurgique préalable pouvant permettre leur dépollution. <p>Par contre, les autres rejets de la filière, en l’occurrence les rejets de flottation de Kipushi et les scories de fusion pour matte de cuivre, peuvent eux être acceptés en décharge de classe I, sans traitement préalable au regard des limites fournies par la même directive. Les procédés de lixiviation acide chaude et de digestion ont été proposés et retenus comme scénarios de gestion durable à appliquer à ces rejets Ex – UZK, car ils se réalisent tous deux en milieu acide sulfurique d’une part et d’autre part leur application et surtout leur faisabilité en République Démocratique du Congo reste possible ;en outre ils aboutissent à des nouveaux rejets contenant le fer sous forme d’hématite, pouvant être stocké aisément et durablement dans la nature, ce qui est conforme au principe du développement durable. Nous avons tenté de modéliser ces deux scénarios en discutant et comparant la circulation des flux de matière dans les deux procédés, d’abord autour de chaque opération métallurgique unitaire, et ensuite sur l’ensemble du procédé. Ainsi nous avons pu chiffrer tous les flux entrant et sortant dans le système étudié, en considérant 1000 kg de rejets Ex –UZK alimentés. Cette quantification nous a permis de comparer les coûts opératoires de ces deux procédés. Les résultats obtenus dans la présente étude sont encourageants et nous ont permis de formuler des recommandations pour les études ultérieures éventuelles dont les résultats pourront l’enrichir davantage, notamment sur les aspects technologiques, économiques et environnementaux, de manière à faciliter les applications sur terrain.<p><p>This work deals with environmental liabilities consisting of base metals pollution due to metallurgical processing of copper – zinc sulphide ores in Kipushi mine in Democratic Republic of Congo. The main objective of this work was to propose sustainable management scenarios for the most important environmental liabilities from metallurgical sector. For this purpose, liabilities were first identified on four metallurgical plants. Then, leaching tests with deionized water were carried out to assess the soluble fractions of base metals. These effluents were also classified according to the test described in european decision 2003-33-EC, which determines the conformity of waste to landfill. Ex – UZK effluents are the most dangerous from this sector, according to this directive, since the quantities of leached copper and zinc were far beyond the limits :they cannot be sent to class I landfill without prior metallurgical processing. However, other effluents like flotation wast and Lubumbashi slag originating from melting for copper matte, are acceptable without prior treatment. Hot acid leaching and digestion were proposed as sustainable management scenarios for to these Ex – UZK waste because :both can be performed in sulfuric acid and they are feasible in Democratic Republic of Congo. They also lead to an iron – rich waste consisting of hematite that can be stored easily and sustainably in nature, which is consistent with the principle of sustainable development. We have modeled these two scenarios by discussing and comparing the flows in both processes, first for each individual metallurgical unit process, and then for the whole chain of value. So we could assess all the inputs and outputs of the studied system, expressed per ton of Ex – UZK waste. The operating costs of both processes were calculated and compared. The results are encouraging. Recommendations were proposed for further studies, in order to investigate more deeply the technological, economical and environmental aspects, to facilitate the final application. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1462 seconds