• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of Microstructure Analysis of Sn-Zn And Sn-Zn-Al Solder Ball in BGA Package.

Wang, Shuo-hung 02 July 2004 (has links)
none
2

Tenue à la corrosion de structures assemblées par déformation à froid / Plastic strain effect on the corrosion resistance of continuous hot-dip galvanized steel

Biskri, Mohamed 10 July 2017 (has links)
De nos jours, la galvanisation continue par immersion à chaud est largement utilisée dans les structures métalliques pour protéger les aciers contre la corrosion. Le zinc offre une barrière protectrice grâce à la formation d'un oxyde de surface et d'un effet de protection sacrificielle. Cependant, les procédés de fabrication de la structure ou les assemblages mécaniques par déformation plastique peuvent créer des dommages affectant les performances de corrosion du revêtement.L’objectif de ce travail était d’étudier la durabilité, en environnement agressif, par des essais d’immersion et en enceinte climatique, de revêtements galvanisés déformés à la suite d’une mise en forme. Trois revêtements différents ont été choisis. Un revêtement de zinc utilisé comme référence, un revêtement Zn-Al-Mg dans lequel l’ajout de magnésium et d’aluminium permet une meilleure tenue à la corrosion et enfin un revêtement Zn-55Al choisi pour sa très bonne durabilité en environnement agressif en raison de la quantité importante d’aluminium présente dans sa composition. / Nowadays continuous hot-dip galvanizing is widely used in metallic structures to protect steels against corrosion. Zinc provides a protective barrier thanks to the for-mation of a surface oxide and a sacrificial protection effect. However, structure manufacturing processes or mechanical assemblies by plastic deformation can create damage affecting the corrosion performance of the coating.The objective of the present work is to study changes of corrosion resistance induced by plastic deformation using immersion and climatic chamber tests. Three different coatings were chosen. A zinc coating used as a reference, a Zn-Al-Mg coating in which the addition of magnesium and aluminum allows a better resistance to corrosion and finally a Zn-55Al coating chosen for its very good durability in aggressive environment in Because of the large amount of aluminum present in its composition.
3

Development of a Novel Si-Modified Zn-Al Eutectoid Alloy for Hot-Dip Batch Galvanizing

Joshi, Abhay Vikas 20 July 2006 (has links)
No description available.
4

MODELAGEM CINÉTICA DA PRODUÇÃO DE PROPENO A PARTIR DE ACETONA EM UMA ÚNICA ETAPA / KINETIC MODELING OF PROPYLENE PRODUCTION FROM ACETONE IN A SINGLE STEP

Enzweiler, Heveline 19 February 2014 (has links)
Fundação de Amparo a Pesquisa no Estado do Rio Grande do Sul / Propylene is a chemical compound with high value added, widely used in the industry and usually obtained from petroleum. However, there is the need of the development of alternative routes for the production of this compound from renewable sources. The use of acetone for the production of propylene is a good option, because this oxygenated compound can be obtained by biomass conversion. The use of a one step process also adds an advantage to the propylene production from acetone, uniting in a single reactor two consecutive reactions: acetone hydrogenation, followed by dehydration of the formed isopropanol. For this, there are necessary two catalysts with distinct properties, one containing metallic sites, for hydrogenation, and another where there are acidic sites, for dehydration. The main objective of this work is to obtain propylene from acetone in one single step, using Cu/Zn/Al mixed oxide derived from hydrotalcite-like compounds and acid form of Beta zeolite as catalysts. For that, the catalysts were obtained by the coprecipitation method at variable pH followed by calcination, for the mixed oxide, and by hydrothermal synthesis, for the zeolite. The catalysts were also characterized as their with distinct properties. The hydrogenation and dehydration reactions have been studied individually and together by varying the catalyst or mixture of catalysts employed and the composition and flow rate of the feed. First, they were evaluated the thermodynamic boundaries of the reaction systems in which was observed that the acetone hydrogenation is strongly limited by the equilibrium and which are the preferential products of each reaction. For the reaction test, it was used the factorial experimental design, where the feeding conditions and reaction temperature were varied, and as response variables it was obtained the composition of the organic fraction at the reactor outlet. In the hydrogenation reaction, only isopropanol was obtained and the acetone conversion was close to that of equilibrium. In the dehydration reaction of isopropanol, propylene was preferably formed, with only small concentrations of diisopropyl ether at low temperatures, being obtained complete alcohol conversion in some experimental conditions. The complete process of acetone conversion into propylene was carried out at eleven distinct experimental conditions and the olefin fraction was up to 65 % of the organic fraction. It was possible the parameters estimation of simplified kinetic models, considering the Langmuir-Hinshelwood hypothesis, appropriate to the prediction of the molar fractions of the compounds in the organic fraction for both individual as simultaneous reactions. The kinetic models were used to the analysis of the effect of process variables on the reaction products in the three reaction systems considered. / O propeno é um composto químico de alto valor agregado, largamente empregado na indústria e obtido, geralmente, a partir do petróleo. Entretanto, há a necessidade do desenvolvimento de rotas alternativas para a produção deste composto a partir de fontes renováveis. A utilização de acetona para a produção de propeno é uma boa opção, pois este composto oxigenado pode ser obtido através de conversão da biomassa. A utilização de processo em uma única etapa acrescenta, ainda, mais uma vantagem à produção de propeno a partir de acetona, unindo em um único reator duas reações consecutivas: hidrogenação de acetona, seguida da desidratação do isopropanol formado. Para tanto, são necessários dois catalisadores com propriedades distintas, um deles contendo sítios metálicos, para a hidrogenação, e outro onde haja sítios ácidos, para a desidratação. O objetivo principal deste trabalho é a obtenção de propeno a partir de acetona em uma única etapa, utilizando óxido misto de Cu/Zn/Al derivado de material do tipo hidrotalcita e forma ácida da zeólita Beta como catalisadores. Para isso, os catalisadores foram obtidos pelo método de coprecipitação a pH variável seguido de calcinação, para o óxido misto, e pela síntese hidrotérmica, para a zeólita. Os catalisadores foram, ainda, caracterizados quanto às suas propriedades físicoquímicas. As reações de hidrogenação e desidratação foram estudadas individualmente e em conjunto variando-se o catalisador ou mistura de catalisadores empregados e a composição e vazão da alimentação. Primeiramente, foram avaliados os limites termodinâmicos dos sistemas reacionais, em que se observou que a hidrogenação de acetona é fortemente limitada pelo equilíbrio e quais são os produtos preferenciais de cada reação. Para os testes reacionais foi utilizado planejamento de experimentos fatorial, onde as condições de alimentação e temperatura de reação foram variadas, e como variáveis resposta obteve-se a composição da fração orgânica na saída do reator. Na reação de hidrogenação, apenas isopropanol foi obtido e a conversão de acetona foi próxima daquela de equilíbrio. Na reação de desidratação de isopropanol, o propeno foi formado preferencialmente, com apenas pequenas concentrações de éter di-isopropílico a baixas temperaturas, sendo obtidas conversões completas do álcool em algumas condições experimentais. O processo completo de conversão de acetona em propeno foi realizado em onze condições experimentais distintas e a fração de olefina foi de até 65 % da fração orgânica. Foi possível a estimação dos parâmetros de modelos cinéticos simplificados, considerando as hipóteses de Langmuir-Hinshelwood, adequados à predição das frações molares dos compostos na fração orgânica tanto para as reações individuais como simultâneas. Os modelos cinéticos foram utilizados para a análise do efeito das variáveis de processo sobre os produtos de reação nos três sistemas reacionais considerados.
5

Zinc speciation of a smelter contaminated boreal forest site

2013 December 1900 (has links)
HudBay Minerals (formerly the Hudson Bay Mining and Smelting Co., Limited) has operated a Zn and Cu processing facility in Flin Flon, MB since the 1930’s. Located in the Boreal Shield, the area surrounding the mine complex has been severely impacted by both natural (forest fires) and the anthropogenic disturbance, which has adversely affected recovery of the local forest ecosystem. Zinc is one of the most prevalent smelter-derived metals in the soils and has been identified as a key factor limiting natural revegetation of the landscape. Because metal toxicity is related more to speciation than to total concentration, Zn speciation in soils from the impacted landscape was characterized using X-ray absorption fine structure, X-ray fluorescence mapping and µ-X-ray absorption near edge structure. Beginning with speciation at a micro-scale and transitioning to bulk speciation was able to determine Zn speciation and link it to two distinct landform characteristics: (1) soils stabilized by metal tolerant grass species—in which secondary adsorption species of Zn (i.e., sorbed to Mn and Si oxides, and as outer-sphere adsorbed Zn) were found to be more abundant; and (2) eroded, sparsely vegetated soils in mid to upper slope positions that were dominated almost entirely by smelter derived Zn minerals, specifically Franklinite (ZnFe2O4). The long-term effect of liming on pH and Zn speciation was examined using field sites limed by a community led organization over a ten year period. Upon liming to a pH of 4 to 4.5, the eroded, sparsely vegetated soils where found to form a Zn-Al-Hydroxy Interlayer Material (HIM) co-precipitate, reducing the phytotoxicity of both Zn and Al and allowed for boreal forest vegetation to recovery quickly in these areas. The grass stabilized soils experienced a steady pH increase, as compared to a sporadic pH increase in the heavily eroded soils, as the buffering capacity was overcome allowing for a transition between multiple adsorption species based upon the point of zero charge of reactive soil elements. Ultimately reaching a near neutral pH after ten years, this allowed for the formation of stable Zn-Al-layered double hydroxide (LDH) soil precipitates and significantly reduced concentrations of plant available Zn.
6

Atmospheric corrosion of zinc-aluminum and copper-based alloys in chloride-rich environments : Microstructure, corrosion initiation, patina evolution and metal release

Zhang, Xian January 2014 (has links)
Fundamental understanding of atmospheric corrosion mechanisms requires an in-depth understanding on the dynamic interaction between corrosive constituents and metal/alloy surfaces. This doctoral study comprises field and laboratory investigations that assess atmospheric corrosion and metal release processes for two different groups of alloys exposed in chloride-rich environments. These groups comprise two commercial Zn-Al alloy coatings on steel, Galfan™ (Zn5Al) and Galvalume™ (Zn55Al), and four copper-based alloys (Cu4Sn, Cu15Zn, Cu40Zn and Cu5Zn5Al). In-depth laboratory investigations were conducted to assess the role of chloride deposition and alloy microstructure on the initial corrosion mechanisms and subsequent corrosion product formation. Comparisons were made with long-term field exposures at unsheltered marine conditions in Brest, France. A multitude of surface sensitive and non-destructive analytical methods were adopted for detailed in-situ and ex-situ analysis to assess corrosion product evolution scenarios for the Zn-Al and the Cu-based alloys. Scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS) were employed for morphological investigations and scanning Kelvin probe force microscopy (SKPFM) for nobility distribution measurements and to gain microstructural information. SEM/EDS, infrared reflection-absorption spectroscopy (IRAS), confocal Raman micro-spectroscopy (CRM) and grazing incidence x-ray diffraction (GIXRD) were utilized to gain information on corrosion product formation and possibly their lateral distribution upon field and laboratory exposures. The multi-analytical approach enabled the exploration of the interplay between the microstructure and corrosion initiation and corrosion product evolution. A clear influence of the microstructure on the initial corrosion product formation was preferentially observed in the zinc-rich phase for both the Zn-Al and the Cu-Zn alloys, processes being triggered by microgalvanic effects. Similar corrosion products were identified upon laboratory exposures with chlorides for both the Zn-Al and the Cu-based alloys as observed after short and long term marine exposures at field conditions. For the Zn-Al alloys the sequence includes the initial formation of ZnO, ZnAl2O4 and/or Al2O3 and subsequent formation of Zn6Al2(OH)16CO3·4H2O, and Zn2Al(OH)6Cl·2H2O and/or Zn5(OH)8Cl2·H2O. The patina of Cu sheet consists of two main layers with Cu2O predominating in the inner layer and Cu2(OH)3Cl in the outer layer, and with a discontinuous presence of CuCl in-between. Additional patina constituents of the Cu-based alloys include SnO2, Zn5(OH)6(CO3)2, Zn6Al2(OH)16CO3·4H2O and Al2O3. General scenarios for the evolution of corrosion products are proposed as well as a corrosion product flaking mechanism for some of the Cu-based alloys upon exposure in chloride-rich atmospheres. The tendency for corrosion product flaking was considerably more pronounced on Cu sheet and Cu4Sn compared with Cu15Zn and Cu5Al5Zn. This difference is explained by the initial formation of zinc- and zinc-aluminum hydroxycarbonates Zn5(OH)6(CO3)2 and Zn6Al2(OH)16CO3·4H2O on Cu15Zn and Cu5Al5Zn, corrosion products that delay the formation of CuCl, a precursor of Cu2(OH)3Cl. As a result, the observed volume expansion during transformation of CuCl to Cu2(OH)3Cl, and the concomitant flaking process of corrosion products, was less severe on Cu15Zn and Cu5Al5Zn compared with Cu and Cu4Sn in chloride-rich environments. The results confirm the barrier effect of poorly soluble zinc and zinc-aluminum hydroxycarbonates Zn5(OH)6(CO3)2 and Zn6Al2(OH)16CO3·4H2O, which results in a reduced interaction between chlorides and surfaces of Cu-based alloys, and thereby reduced formation rates of easily flaked off corrosion products. From this process also follows reduced metal release rates from the Zn-Al alloys. / Bättre molekylär förståelse för metallers atmosfäriska korrosion kräver en fördjupad kunskap i det dynamiska samspelet mellan atmosfärens korrosiva beståndsdelar och metallytan. Denna doktorsavhandling omfattar laboratorie- och fältundersökningar av korrosions- och metallfrigöringsprocesser av två grupper av legeringar som exponerats i kloridrika atmosfärsmiljöer: två kommersiella Zn-Al beläggningar på stål, Galfan™ (Zn med 5% Al, förkortat Zn5Al) och Galvalume™ (Zn55Al), samt fyra kopparbaserade legeringar (Cu4Sn, Cu15Zn, Cu40Zn och Cu5Zn5Al). Undersökningar har genomförts i renodlade laboratorie-miljöer med för-deponerade NaCl-partiklar i en atmosfär av varierande relativ fuktighet. Syftet har varit att utvärdera betydelsen av kloriders deposition och legeringarnas mikrostruktur på korrosionsmekanismen samt bildandet av korrosionsprodukter. Jämförelser av korrosionsmekanismer har även gjorts efter flerårsexponeringar av samma legeringar i en marin fältmiljö i Brest, Frankrike. Undersökningarna har baserats på ett brett spektrum av analysmetoder för detaljerade studier dels under pågående atmosfärisk korrosion (in-situ), och dels efter avslutad korrosion (ex-situ). Legeringarnas mikrostruktur och tillhörande variation i ädelhet hos olika faser har undersökts med svepelektronmikroskopi och energidispersiv röntgenmikroanalys (SEM/EDS) samt med en variant av atomkraftsmikroskopi (engelska: scanning Kelvin probe force microscopy, SKPFM). Korrosionsprodukternas tillväxt har analyserats in-situ med infraröd reflektions-absorptionsspektroskopi (IRAS), samt morfologi och sammansättning av bildade korrosionsprodukter ex-situ med SEM/EDS, konfokal Raman mikro-spektroskopi (CRM) samt röntgendiffraktion vid strykande ifall (GIXRD). Det multi-analytiska tillvägagångssättet har medfört att det komplexa samspelet mellan de skilda legeringarnas mikrostruktur, korrosionsinitiering och bildandet av korrosionsprodukter kunnat studeras i detalj. En tydlig påverkan av mikrostruktur på det initiala korrosionsförloppet har kunnat påvisas. Korrosionsinitieringen sker företrädesvis i mer zinkrika faser för såväl Zn-Al- som Cu-Zn-legeringar och orsakas av mikro-galvaniska effekter mellan de mer zinkrika, mindre ädla, faserna och omgivande faser. Deponerade NaCl-partiklar påskyndar den lokala korrosionen oberoende av mikrostruktur. Snarlika sekvenser av korrosionsprodukter har kunnat påvisas såväl efter laboratorie- som fältexponeringar. För Zn-Al-legeringar bildas först ZnO, ZnAl2O4 och/eller Al2O3, därefter Zn6Al2(OH)16CO3·4H2O och Zn2Al(OH)6Cl·2H2O och/eller Zn5(OH)8Cl2·H2O. På ren koppar bildas ett inre skikt dominerat av Cu2O, ett mellanskikt av CuCl och ett yttre skikt med i huvudsak Cu2(OH)3Cl. Beroende på legeringstillsats har även SnO2 och Zn5(OH)6(CO3)2 kunnat identifieras. En mekanism för flagning av korrosionsprodukter på kopparbaserade legeringar i kloridrika atmosfärer har utvecklats. Tendensen för flagning har visat sig vara mycket mer uttalad på ren Cu och Cu4Sn än på Cu15Zn och Cu5Al5Zn. Skillnaden kan förklaras med hjälp av det tidiga bildandet av Zn5(OH)6(CO3)2 och Zn6Al2(OH)16CO3·4H2O på Cu15Zn och Cu5Al5Zn som fördröjer bildandet av CuCl, en föregångare till Cu2(OH)3Cl. Därigenom hämmas även den observerade volymexpansionen som sker när CuCl omvandlas till Cu2(OH)3Cl, en process som visar sig vara den egentliga orsaken till att korrosionsprodukterna flagar. Resultaten bekräftar barriäreffekten hos de mer svårlösliga faserna Zn5(OH)6(CO3)2 och Zn6Al2(OH)16CO3·4H2O, vilken dels resulterar i en minskad växelverkan mellan klorider och de legeringsytor där dessa faser kan bildas, och dels i en reducerad metallfrigöringshastighet. / <p>QC 20140915</p> / Autocorr, RFSR-CT-2009-00015 Corrosion of heterogeneous metal-metal assemblies in the automotive industry / Atmospheric corrosion and environmental metal dispersion from outdoor construction materials
7

Characterisation of soluble components and PAH in PM10 atmospheric particulate matter in Brisbane

Kumar, Annakkarage January 2008 (has links)
Fours sets of PM10 samples were collected in three sites in SEQ from December 2002 to August 2004. Three of these sets of samples were collected by QLD EPA as a part of their regular air monitoring program at Woolloongabba, Rocklea and Eagle Farm. Half of the samples were used in this study for the analysis of water-soluble ions, which are Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 -, SO4 2-, F-, Br-, NO2 -, PO4 -3 and the other half was retained by QLD EPA. The fourth set of samples was collected at Rocklea, specifically for this study. A quarter of the samples obtained from this set of samples were used to analyse water-soluble ions; a quarter of the sample was used to analyse Pb, Cu, Al, Fe, Mn and Zn; and the rests were used to analyse US EPA 16 priority PAHs. The water-soluble ions were extracted ultrasonically with water and the major watersoluble anions as well as NH4 + were analysed using IC. Na+, K+, Mg2+, Ca2+ Pb, Cu, Al, Fe, Mn and Zn were analysed using ICP-AES while PAHs were extracted by acetonitrile and analysed using HPLC. Of the analysed water-soluble ions, Cl-, NO3 -, SO4 2-, Na+, K+, Mg2+ and Ca2+ were high in concentration and determined in all the samples. F-, Br-, NO2 -, PO4 -3 and NH4 + ions were lower in concentration and determined only in some samples. Na+ and Cl- were high in all samples indicating the importance of a marine source. Principal Component Analysis (PCA) was used to examine the temporal variations of the water-soluble ions at the three sites. The results indicated that there was no major difference between the three sites. However, comparing the average concentrations of ions and Cl-/Na+ it was concluded that Woolloongabba had more marine influence than the other sites. Al, Fe and Zn were detected in all samples. Al and Fe were high in all samples indicating the significance of a source of crustal matter. Cu, Mn and Pb were in low concentrations and were determined only in some samples. The lower Pb concentrations observed in the study than in previous studies indicate that the phasing-out of leaded petrol had an appreciable impact on Pb levels in SEQ. This study reports for the first time, simultaneous data on the water-soluble, metal ion and PAH levels of PM10 aerosols in Brisbane, and provides information on the most likely sources of these chemical species. Such information can be used alongside those that already exist to formulate PM10 pollution reduction strategies for SEQ in order to protect the community from the adverse effects of PM pollution.
8

Coating of High Strength Steels with a Zn-1.6Al-1.6Mg Bath / Selective Oxidation and Reactive Wetting of High Strength Steels by a Zn-1.6Al-1.6Mg Bath

De Rango, Danielle M. January 2019 (has links)
Recently, Zn-XAl-YMg coatings have emerged as lighter-weight substitutes for traditional Zn-based coatings for the corrosion protection of steels; however, little is currently known concerning the interactions between the oxides present on advanced high strength steel (AHSS) surfaces and the Zn-Al-Mg bath. In the current contri- bution, the selective oxidation and reactive wetting of a series of C-Mn AHSS were determined with the objective of providing a quantitative description of this pro- cess. The process atmosphere pO2 was varied using dew points of −50◦C, −30◦C and −5◦C. The surface oxide chemistry and morphology were analysed by means of SEM and XPS techniques. Reactive wetting of the selectively oxidized surfaces using a Zn-1.6 wt.% Al-1.6 wt.% Mg bath was monitored as a function of annealing time at 60 s, 100 s and 140 s at 800◦C. The resulting bare spot defects in the Zn-1.6 wt.% Al-1.6 wt.% Mg coating were assessed by means of SAM-AES and FIB, while coating adhesion was analysed by 180◦ bend tests. Annealing the steel substrates resulted in the formation of surface MnO, which varied based on pO2 and Mn alloy content, and that this MnO greatly reduced the wettability of the steel by the Zn-1.6 wt.% Al- 1.6 wt.% Mg bath, resulting in bare spot defects. It was determined that the reactive wetting of the steel substrate was dependant on the oxide morphology and oxidation mode, which was a function of both alloying content of Mn in the steel and annealing pO2 process atmosphere (dew point). Finally, it was concluded that the bare spot area percentage on the coated panels was statistically invariant for annealing times of between 60 s and 140 s at 800◦C. / Thesis / Master of Applied Science (MASc) / Metallic coatings are applied to steels that are not naturally corrosion resistant. The aim of this research was to determine how well a coating containing zinc, aluminum and magnesium adhered to high strength automotive steel. It was deter- mined that manganese oxides formed on the steel during heating prior to applying the metallic coating. The manganese oxides prevented good adhesion between the steel and the coating, resulting in bare spot defects in the coating. The bare spot defects are undesirable as they leave the steel exposed and therefore susceptible to corrosion and are unsightly when painted.

Page generated in 0.0291 seconds