Spelling suggestions: "subject:"zwischenstufe"" "subject:"zwischenstufen""
11 |
Investigation of heterogeneously catalyzed reactions using molecular beam sampling mass spectrometry with threshold ionizationHorn, Raimund. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Berlin.
|
12 |
Synthese und Reaktionen von heteroatomgebundenen AzidenPester, Tom 24 September 2021 (has links)
Hinweis: Zur optimalen Darstellung des Dokumentes bitte die Schriftart „ArnoPro“ installieren.
Die vorliegende Arbeit beschäftigt sich mit der Synthese und den Reaktionen von heteroatomgebundenen Aziden. Im Speziellem werden vier verschiedene Gruppen untersucht, diese umfassen: Die Synthese von N-Azido-Aminen u. a. mittels nucleophiler Substitution und Diazotransfer-Reaktion, die Synthese von N-Azido-Iminen mittels nucleophiler Substitution und Addition-Reaktion von Azid an Iminium-aktivierte Azide, die Synthese von N4O/N4O2 durch Addition von Azid-Ion an Nitrosyl/Nitronium-Salze und die Synthese von Iod(III)aziden als Iod(III)mono-, -di- und triazid(e) mittels nucleophiler Substitution.
Ein besonderes Augenmerk liegt in der Untersuchung der neu etablierten Reaktion zur Synthese von N-Amidino-Pentazolen und N-Azido-Amidinen ausgehend von Chlor-Iminium-Salzen. Es konnte hierbei gezeigt werden, dass nach einer ersten Substitutionsreaktion die neu eingeführte Azid-Gruppe durch die Nachbarschaft zur Iminium-Struktur aktiviert wird und so ein weiteres Azid-Ion an der Azid-Gruppe angreifen kann. Die sich im Folgenden bildenden N-Amidino-Pentazole und N-Azido-Amidine lassen sich mit Hilfe von 15N-Isotopenmarkierungen eindeutig, ohne unterstützende quantenchemische Rechnungen, bei tiefer Temperatur NMR-spektroskopisch nachweisen und belegen. Der Zerfall dieser Verbindungen bei Raumtemperatur liefert neben drei Äquivalenten Distickstoff ein nucleophiles Carben, welches diversen Folgereaktionen unterliegt und u. a. zu Azidomethylenaminen und Triazenium-Derivaten führt.:I. Inhaltsverzeichnis vi
II. Abkürzungsverzeichnis ix
1. Einleitung 1
1.1. Azide - explosiv und vielfältig 1
1.1.1. Allgemeines 1
1.1.2. Heteroatomgebundene Azide in der Literatur 4
1.1.2.1. Überblick und bekannte Reagenzien 4
1.1.2.2. N-Azido-Amine 41 7
1.1.2.3. N-Azido-Imine 67 12
1.2. Stickstoff-haltige Heterocyclen 13
1.3. Zielsetzung 17
2. Ergebnisse und Diskussion 19
2.1. Synthese von N-Azido-Aminen 41 19
2.1.1. Synthese mittels nucleophiler Substitution 20
2.1.1.1. Reaktion von 43a mit NaN3: Die Reaktionsprodukte A und B 20
2.1.1.2. Reaktion von 43a mit NaN3: Aufklärung des Reaktionsmechanismus 22
2.1.1.3. Reaktion von 43a mit NaN3: Variation der Reaktionsbedingungen 26
2.1.1.4. Reaktion von 43a mit NaN3: Variation des Azid-Reagenzes 27
2.1.1.5. Variationen der Abgangsgruppe 29
2.1.2. Synthese mittels Diazotransfer 36
2.1.3. Synthese mittels Azid-Gruppen-Übertragung 43
2.1.4. Synthese über Tetrazenium-Salze 45
2.1.5. Synthese über N-Diazonium-Salze 47
2.2. Synthese von N-Azido-Iminen 67 52
2.2.1. Synthese mittels nucleophiler Substitution 53
2.2.2. Synthese mittels Additionsreaktion 55
2.2.2.1. Vorversuche 56
2.2.2.2. Reaktionssystem nach BALLI et al. 59
2.2.2.3. Weitere Formamid-Derivate 79
2.2.2.4. Weitere Systeme 90
2.3. Synthese von N4O (213) und N4O2 (216) 100
2.4. Synthese von Iod(III)aziden 108
2.4.1. Synthese von Iod(III)monoaziden 108
2.4.2. Synthese von Iod(III)diaziden 110
2.4.3. Synthese von Iod(III)triazid (242) 115
3. Zusammenfassung und Ausblick 120
4. Experimenteller Teil 124
4.1. Arbeitsweisen 124
4.1.1. Sicherheitshinweise zum Umgang mit Aziden 124
4.1.2. Arbeiten unter Inertgas 124
4.1.3. Arbeiten bei tiefer Temperatur 125
4.1.4. Verwendung/Trocknung von Lösungsmitteln 125
4.1.5. NMR-Spektroskopie 125
4.1.6. FT-IR-Spektroskopie 126
4.1.7. in-situ-IR-Spektroskopie 126
4.1.8. HRMS 127
4.1.9. Elementaranalyse 127
4.1.10. Schmelzpunkt 127
4.1.11. Synthese von Methylmethylenimin (117) 127
4.1.12. Synthese von N4O (213) und N4O2 (216) 129
4.2. Synthese der Edukte/Reagenzien 130
4.3. Genutzte, kommerziell verfügbare Chemikalien 131
4.4. Synthesevorschriften 135
4.4.1. Synthese von 1,3,5-Trimethyl-2,3,4,5-tetrahydro-1,3,5-triazinium-
chlorid (116a) 135
4.4.2. Synthese von Methylmethylenimin (117) 136
4.4.3. Synthese von N-Brom-N,N-dimethylamin (121a) 137
4.4.4. Synthese von N,N-Dichlormethylamin (125a) 138
4.4.5. Synthese von Benzoesäuremethylester (131) 139
4.4.6. Synthese von N-Chlor-N-methyl-N-prenylamin (43q) 140
4.4.7. Synthese von 1,1-Dibenzyl-2-tosylhydrazin (137) 141
4.4.8. Synthese von N-Methyl-N-(3-methylbut-2-en-1-yl)hydrazin (54q) 142
4.4.9. Synthese von (E)-1-Methyl-2-(1,1-dimethylprop-2-en-1-yl)diazen (132r) 143
4.4.10. Synthese von 1-((2,4,6-Triisopropylphenyl)sulfonyl)-4,5,6,7,8,9-hexahydro-1H-cycloocta[d]-1,2,3-triazol (141) und 2-((2,4,6-Triisopropylphenyl)sulfonyl)-4,5,6,7,8,9-hexahydro-2H-cycloocta[d]-1,2,3-triazol (142) 144
4.4.11. Synthese von 1,1,1,4,4-Pentamethyltetrazenium-triflat (145a) 146
4.4.12. Synthese von 1-Methyl-4,5,6,7,8,9-hexahydro-1H-cycloocta[d]-1,2,3-
triazol (152) 147
4.4.13. Synthese von N-Thiocyanato-cyclohexylimin (181u) 148
4.4.14. Synthese von 5-Chloro-1-methyl-3,4-dihydro-2H-pyrrol-1-ium
chlorid (185n) 149
4.4.15. Synthese von N-Cyano-N,N-dimethylamin (122) 150
4.4.16. Synthese von N-Azidomethyl-N,N-dimethylamin (48) 151
4.4.17. Synthese von N-Azido-3-ethylbenzothiazol-2-imin (71a) 152
4.4.18. Synthese von 3-Ethyl-N-(4,5,6,7,8,9-hexahydro-1H-cycloocta[d]-1,2,3-triazol-1-yl) benzothiazol-2-imin (196a) 154
4.4.19. Synthese von N'-Azido-N,N-dimethylformamidin (15N4-67a) und N,N-Dimethyl-N'-pentazolyl)formamidin (15N6-199a) 157
4.4.20. Synthese von N-(Azidomethylen)-N-methylmethanaminium-
salzen (15N3-186a) 160
4.4.21. Allgemeine Synthesevorschrift zu den N-Azido-formamidinen (15N3-67), Azido-Iminium-Salzen (15N2-186), Diaziden (15N2-187) und N-Amidino-Pentazolen
(15N4-199) 161
4.4.22. Synthese von 1-Ethyl-2-(4,5,6,7,8,9-hexahydro-2H-cycloocta[d]-1,2,3-triazol-2-yl)pyridin-1-iumsalzen (210q) 168
4.4.23. Synthese von 2-((1,3-Dimethylimidazolidin-2-yliden)triaz-1-en-1-yl)-1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium-hexafluorophosphat (208s) 170
4.4.24. Synthese von Ethyl-2-(azido(phenyl)iodanyl)-2-diazoacetat (227a) 171
4.4.25. Synthese von 2-Ethoxy-2-oxo-acetonitril (232a) 172
4.4.26. Synthese von Phenyl((trimethylsilyl)oxy)iodanyl-triflat (239a) 173
5. Literaturverzeichnis 174
6. Danksagung 186
7. Anhang 188
7.1. Teil I 189
7.2. Teil II 199
8. Selbstständigkeitserklärung 294
9. Lebenslauf 295
|
13 |
Oxovanadiumcalixaren-Komplexe als Molekülmodelle für katalytisch aktive Oberflächenspezies und als homogene OxidationskatalysatorenHoppe, Elke 20 August 2007 (has links)
Abstract Zur Modellierung einer Oxidoberfläche wurden p-tert-Butylcalix[4]aren (H4CA[4]), Dimethyl-p-tert-butylcalix[4]aren (H2Me2CA[4]), p-tert-Butylcalix[8]aren (H8CA[8]) und p-tert-Butylthiacalix[4]aren (H4TC) eingesetzt. Es gelang die Synthese von unterschiedlichen mono- und dinuklearen, geladenen und ungeladenen Oxovanadium(V)-verbindungen. Die Verbindungen [CA[4]V=O]- (4), [AcOCA[4]V=O] (5), [HCA[8](V=O)2]- (6), [Me2CA[4](µ-O)(V(O)OMe)2] (7), [CA[8](µ3-O)2V4O4] (8a/8c), [(H2TC)VOCl2]- (9) und [{(H2TC)V(O)(µ2-O)}2]2- (10) wurden als Katalysatoren für die Oxidation von Alkoholen in Gegenwart von Sauerstoff getestet. Die dinuklearen Komplexe 6 und 7 katalysieren die Oxidation von 1-Phenyl-1-propargylalkohol und Fluorenol effizient. Des Weiteren stellten die beiden Thiacalixarenkomplexe 9 und 10 in den meisten untersuchten Fällen bessere Katalysatoren dar als die Oxovanadiumkomplexe, die die „klassischen“ Calixarene als Liganden enthalten. Der dinukleare Komplex 10 zeigte eine höhere Aktivität als der mononukleare Thiacalixarenkomplex 9. Es konnte gezeigt werden, dass 9 als Präkatalysator wirkt und in die aktive Spezies [TCV=O]- (11) umgewandelt wird. Auf Basis der Isolierung von [(TC)2V]- (12) und kinetischen Untersuchungen konnte ein möglicher Reaktionsmechanismus formuliert werden. Um die Reaktionsmechanismen für ausgewählte Systeme aufzuklären, wurde die Isolierung von Reaktionsintermediaten angestrebt. Aus der Umsetzung von Fluorenol mit 10 in Abwesenheit von Sauerstoff konnte das Intermediat [{(H2TC)V(O)}2(µ2-OH)(µ2-OC13H9)]2- (13), isoliert und vollständig charakterisiert werden. Unter Einbeziehung der Ergebnisse von Untersuchungen zur Reaktivität von 13 konnte ein plausibler Mechanismus für einen Katalysezyklus vorgeschlagen werden, nach welchem der Oxidationsprozess an den verbrückenden Oxoliganden stattfindet und die beiden Vanadiumzentren der Verbindung während der Reaktion kooperieren. Oxovanadium Komplexe, Calix aren Komplexe, Oxidationskatalysator, Alkoholoxidation, Reaktionsmechanismen / Abstract For Modelling an oxosurface p-tert-butylcalix[4]arene (H4CA[4]), dimethyl p-tert-butylcalix[4]arene (H2Me2CA[4]), p-tert-butylcalix[8]arene (H8CA[8]) and p-tert-butylthiacalix[4]arene (H4TC) have been used. Different mono- and dinuclear, charged and uncharged oxovanadium(V) compounds have been synthesized. The compounds [CA[4]V=O]- (4), [AcOCA[4]V=O] (5), [HCA[8](V=O)2]- (6), [Me2CA[4](µ-O)(V(O)OMe)2] (7), [CA[8](µ3-O)2V4O4] (8a/8c), [(H2TC)VOCl2]- (9) and [{(H2TC)V(O)(µ2-O)}2]2- (10) were tested as catalysts for the oxidation of alcohols in the presence of dioxygene. The dinuclear complexes 6 and 7 efficiently catalyse the oxidation of 1-Phenyl-1-propargylic alcohol and fluorenol. Furthermore, the two thiacalixarene complexes in most cases demonstrated to be better catalysts than the oxovanadium(V) complexes with classic calixarenes as ligands. With regard to the thiacalixarene complexes 9 and 10, the dinuclear complex 10 showed a higher activity compared to the mononuclear complex 9. Further investigations showed, that 9 is a precatalyst for the active species [TCV=O]- (11). On the basis of the isolation of [(TC)2V]- (12) and kinetic investigations a possible reaction mechanism for the oxidation of alcohols could be suggested. In order to clarify the reaction mechanisms for selected systems the isolation of reaction intermediates was pursued. The reaction of fluorenol and 10 in the absence of O2 led to the isolation of the reaction intermediate [{(H2TC)V(O)}2(µ2-OH)(µ2-OC13H9)]2- (13), which was completely characterised. Including the results of investigations concerning the reactivity of 13 a mechanism for a plausible catalysis cycle was proposed. Accordingly the oxidation reaction is centered at the bridging oxoligands, while the two vanadium atoms cooperate during the reaction.
|
14 |
Generation of 4,5-Dihydro-1,2,3-oxadiazole and Study of the Decomposition Products / Erzeugung von 4,5-Dihydro-1,2,3-oxadiazol und Untersuchung der ZersetzungsprodukteSingh, Neeraj 16 December 2015 (has links) (PDF)
4,5-Dihydro-1,2,3-oxadiazoles are postulated to be key intermediates in the synthesis of ketones from alkenes on an industrial scale, alkylation of DNA in vivo, decomposition of N-nitrosoureas (potent carcinogens), and are also a subject of great interest for theoretical chemists. In this thesis, formation of the parent compound and decay into secondary products has been studied by NMR monitoring analysis. The elusive properties and the intermediacy of the parent compound, 4,5-dihydro-1,2,3-oxadiazole, in the decomposition of suitably substituted N-nitrosoureas using Tl(I) alkoxides as bases, have been confirmed by the characterisation of its decay products viz., ethylene oxide, acetaldehyde, and especially diazomethane, at very low temperatures by 1H NMR, 13C NMR, 15N NMR, and relevant 2D NMR methods. Moreover, it has been shown that the methylation of nucleophilic molecules by 3-methyl-4,5-dihydro-1,2,3-oxadiazolium salts, which are considered to be activated forms of β−hydroxyalkylnitrosamines, does not involve 4,5-dihydro-1,2,3-oxadiazole as an intermediate, as has been reported in literature; instead, nucleophilic substitution leading to synthesis of open-chain products dominates the reaction. / 4,5-Dihydro-1,2,3-oxadiazole wurden als Schlüsselintermediate in der industriellen Synthese von Ketonen aus Alkenen, der in vivo Alkylierung von DNA und der Zersetzung von N-Nitrosoharnstoffen (potente Karzinogene) postuliert. Sie sind ebenso von großem Interesse in der theoretischen Chemie. Im Rahmen dieser Arbeit wurde die Bildung der Stammverbindung und deren Zersetzung in sekundäre Produkte mittels NMR-Verfolgung studiert. Die ausgesprochene Kurzlebigkeit der Stammverbindung 4,5-Dihydro-1,2,3-oxadiazol wurde durch die Charakterisierung der Produkte bei der Zersetzung geeignet substituierter N-Nitrosoharnstoffe mit Tl(I)-Alkoxiden bestätigt. Die Zersetzungsprodukte Ethylenoxid, Acetaldehyd und besonders Diazomethan wurden bei sehr niedrigen Temperaturen mittels 1H-NMR, 13C-NMR, 15N-NMR und relevanten 2D-NMR-Methoden charakterisiert.
Des Weiteren konnte gezeigt werden, dass die Methylierung nucleophiler Spezies mit 3-Methyl-4,5-dihydro-1,2,3-oxadiazoliumsalzen, welchen als aktivierte Äquivalente der β−Hydroxyalkylnitrosamine verstanden werden, nicht zur Bildung von 4,5-Dihydro-1,2,3-oxadiazol als Intermediat führt, so wie dies in der Literatur berichtet wurde. Stattdessen wird die Bildung offenkettiger Produkte durch nukleophile Substitution bevorzugt.
|
15 |
Generation of 4,5-Dihydro-1,2,3-oxadiazole and Study of the Decomposition ProductsSingh, Neeraj 24 November 2015 (has links)
4,5-Dihydro-1,2,3-oxadiazoles are postulated to be key intermediates in the synthesis of ketones from alkenes on an industrial scale, alkylation of DNA in vivo, decomposition of N-nitrosoureas (potent carcinogens), and are also a subject of great interest for theoretical chemists. In this thesis, formation of the parent compound and decay into secondary products has been studied by NMR monitoring analysis. The elusive properties and the intermediacy of the parent compound, 4,5-dihydro-1,2,3-oxadiazole, in the decomposition of suitably substituted N-nitrosoureas using Tl(I) alkoxides as bases, have been confirmed by the characterisation of its decay products viz., ethylene oxide, acetaldehyde, and especially diazomethane, at very low temperatures by 1H NMR, 13C NMR, 15N NMR, and relevant 2D NMR methods. Moreover, it has been shown that the methylation of nucleophilic molecules by 3-methyl-4,5-dihydro-1,2,3-oxadiazolium salts, which are considered to be activated forms of β−hydroxyalkylnitrosamines, does not involve 4,5-dihydro-1,2,3-oxadiazole as an intermediate, as has been reported in literature; instead, nucleophilic substitution leading to synthesis of open-chain products dominates the reaction. / 4,5-Dihydro-1,2,3-oxadiazole wurden als Schlüsselintermediate in der industriellen Synthese von Ketonen aus Alkenen, der in vivo Alkylierung von DNA und der Zersetzung von N-Nitrosoharnstoffen (potente Karzinogene) postuliert. Sie sind ebenso von großem Interesse in der theoretischen Chemie. Im Rahmen dieser Arbeit wurde die Bildung der Stammverbindung und deren Zersetzung in sekundäre Produkte mittels NMR-Verfolgung studiert. Die ausgesprochene Kurzlebigkeit der Stammverbindung 4,5-Dihydro-1,2,3-oxadiazol wurde durch die Charakterisierung der Produkte bei der Zersetzung geeignet substituierter N-Nitrosoharnstoffe mit Tl(I)-Alkoxiden bestätigt. Die Zersetzungsprodukte Ethylenoxid, Acetaldehyd und besonders Diazomethan wurden bei sehr niedrigen Temperaturen mittels 1H-NMR, 13C-NMR, 15N-NMR und relevanten 2D-NMR-Methoden charakterisiert.
Des Weiteren konnte gezeigt werden, dass die Methylierung nucleophiler Spezies mit 3-Methyl-4,5-dihydro-1,2,3-oxadiazoliumsalzen, welchen als aktivierte Äquivalente der β−Hydroxyalkylnitrosamine verstanden werden, nicht zur Bildung von 4,5-Dihydro-1,2,3-oxadiazol als Intermediat führt, so wie dies in der Literatur berichtet wurde. Stattdessen wird die Bildung offenkettiger Produkte durch nukleophile Substitution bevorzugt.
|
Page generated in 0.063 seconds