• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biochemische und biophysikalische Charakterisierung von Rhodopsin-Guanylylzyklasen

Scheib, Ulrike 19 March 2019 (has links)
Rhodopsin-Guanylylzyklasen (RhGC) sind einzigartige Photorezeptoren, die kürzlich in Pilzen der Abteilung Blastocladiomycota entdeckt wurden [1]. RhGCs gehören zu den Enzym-Rhodopsinen und die Licht-sensitive mikrobielle Rhodopsin Domäne ist kovalent mit einer Typ III Guanylylzyklase verbunden. Guanylylzyklasen bilden den sekundären Botenstoff cGMP, der zusammen mit cAMP eine Vielzahl biologischer Prozesse reguliert [2–12]. In der vorliegenden Arbeit wurden die fünf neu-entdeckten RhGCs mithilfe unterschiedlicher biochemischer und biophysikalischer Methoden charakterisiert. Elektrophysiologische Messungen erbrachten einen indirekten Nachweis für eine Grünlicht-aktivierte cGMP Synthese bei den RhGCs aus Blastocladiella emersonii (Be) und Catenaria anguillulae (Ca). Die Licht-aktivierte Guanylylzyklasen Funktion dieser RhGCs konnte durch ELISA Experimente und nach Aufreinigung der Photorezeptoren bestätigt werden. Belichtung führte zu einer 100-fachen oder 200-fachen Erhöhung von cGMP mit einem vmax von 1.8 oder 11.6 µmol/min/mg(Protein) bei BeRhGC oder CaRhGC. Im Dunkeln verblieb bei beiden Photorezeptoren die cGMP-Konzentration auf dem Niveau von Kontrollzellen. Durch eine enzymkinetische Analyse der isolierten Guanylylzyklase Domänen (Be/CaGC) konnte die konstitutive Aktivität der enzymatischen Einheit gezeigt werden, die im Vergleich zu den Volllängen Photorezeptoren 3-6x reduziert war. Weiterhin wurden die Photozyklen der isolierten Rhodopsin Domänen mithilfe spektroskopischer Methoden untersucht und Photointermediate identifiziert, die typisch für mikrobielle Rhodopsine sind. Die M-Intermediate zerfielen langsam mit τ ~ 100 ms bei BeRh und τ ~ 500 ms bei CaRh. Um die kinetischen und spektroskopischen Parameter der Photorezeptoren zu verändern, wurden die Be/Ca Rhodopsin Domänen mutiert. Zusätzlich wurde die Substratspezifität der RhGCs geändert und eine Doppelmutation (E497K/C566D) in der katalytischen Domäne erzeugte Rhodopsin-Adenylylzyklasen (RhACs). Die Licht-induzierte cAMP Synthese der RhACs wurde in Xenopus Oocyten getestet und im Vergleich zu BeRhAC zeigte CaRhAC eine erhöhte Licht-zu-Dunkel-Aktivität (6x) einhergehend mit einer verringerten Dunkelaktivität (5.5x). Um weitere Einblicke in die kürzlich entdeckten RhGCs zu erhalten, wurden die isolierten Zyklase Domänen, Be/CaGC und CaAC, in Gegenwart von NTP Analoga kristallisiert. Neben hochauflösenden monomeren GC Strukturen ohne Ligand wurde eine 2.25 Å Struktur der mutierten Zyklase, CaAC, mit dem ATP Analogon ATPαS gelöst. Die CaAC Struktur zeigt ein antiparalleles Arrangement der Dimer-Untereinheiten und die Bindung der Nukleotidbase durch die zuvor mutierten Reste. Aufgrund der Ähnlichkeit zu anderen Typ III Zyklasen kann auf einen klassischen Reaktionsablauf bei RhGCs rückgeschlossen werden. Abschließend wurde die Anwendbarkeit von Ca/BeRhGC sowie CaRhAC in hippokampalen Rattenneuronen und CHO Zellen getestet. Diese Experimente zeigen, dass sowohl RhGCs als auch YFP-CaRhAC als optogenetische Werkzeuge eingesetzt werden können, um die Zellbotenstoffe cGMP bzw. cAMP präzise mit Licht zu regulieren. / Rhodopsin-guanylyl cyclases (RhGC) are unique photoreceptors recently discovered in Blastocladiomycota fungi [1]. In RhGCs the light-sensitive microbial rhodopsin domain is covalently linked to a type III guanylyl cyclase. Guanylyl cyclases form the second messenger cGMP, which together with cAMP regulates a variety of biological processes [2–12]. Due to their architecture, RhGCs are classified as microbial enzyme rhodopsins. In the present work, the five newly discovered RhGCs were characterized using different biochemical and biophysical methods. Electrophysiological measurements provided indirect evidence for green light-activated cGMP synthesis of the RhGCs from Blastocladiella emersonii (Be) and Catenaria anguillulae (Ca). The light-activated guanylyl cyclase function could be confirmed by ELISA experiments and after purification of these photoreceptors. Green illumination led to a 100-fold or 200-fold increase in cGMP with a vmax of 1.8 or 11.6 µmol/min/mg(protein) for BeRhGC or CaRhGC. In the dark the cGMP concentration remained at the level of control cells for both photoreceptors. A kinetic analysis of the isolated guanylyl cyclase domains (Be/CaGC) revealed the constitutive activity of the enzymatic domain, which was 3-6x reduced compared to the full-length photoreceptors. A spectroscopic characterization of the Be/Ca rhodopsin domains allowed the identification of photocycle intermediates, which are typical for microbial rhodopsins. The M-intermediates decayed slowly with a τ ~ 100 ms for BeRh and τ ~ 500 ms for CaRh. The Be/Ca rhodopsin domains were mutated to change the kinetic and spectroscopic parameters of the photoreceptors. In addition, the substrate specificity of the RhGCs was switched to ATP by a double mutation (E497K/C566D) in the catalytic domain. The light-induced cAMP synthesis of the generated rhodopsin-adenylyl cyclases (Be/CaRhACs) was shown in Xenopus oocytes and after purification of the proteins. Compared to BeRhAC, CaRhAC showed an increased light-to-dark activity (6x) and a decreased activity in darkness (5.5x). To get further insight into the recently discovered RhGCs, the isolated cyclase domains, Be/CaGC and CaAC, were crystallized in the presence of NTP analogues. High-resolution monomeric GC structures without a bound ligand were produced. Additionally, a 2.25 Å structure of the mutated cyclase, CaAC, with the ATP analogue ATPαS was solved. The CaAC structure shows an antiparallel arrangement of the dimer subunits and the nucleotide base is bound by the previously mutated residues. Due to the similarity to other type III cyclases, a classical reaction sequence for RhGCs can be deduced. Finally, the applicability of Ca/BeRhGC and CaRhAC was tested in hippocampal rat neurons and CHO cells. These application-oriented approaches show that both RhGCs and YFP-CaRhAC can be used as optogenetic tools to precisely control cGMP and cAMP with light.
2

Investigation of Rhodopsin Guanylyl Cyclase from Catenaria anguillulae with a new combined FTIR and UV-Vis spectrometer

Fischer, Paul 20 May 2022 (has links)
Rhodopsin-Guanylyl-Zyklasen (RGCs) gehören zur Familie der Enzymrhodopsine, welche sich durch eine Lichtregulation ihrer Enzymaktivität durch ein Rhodopsin (Rh) auszeichnen. Das membranständige Rh ist hierbei mit einer Guanylylzyklase (GC) verbunden, welches nach Lichtaktivierung des Rh GTP zu zyklisiertem GMP (cGMP) umsetzt. Der sekundäre Botenstoff cGMP sowie das verwandte cAMP spielen eine wichtige Rolle in einer Vielzahl von biologischen Prozessen. Die lichtgesteuerte Kontrolle dieser Botenstoffe bietet der Optogenetik somit eine Möglichkeit zur Erforschung ihrer Signalwege und könnte so den Weg zu medizinisch nutzbaren Erkenntnissen weisen. Im Rahmen dieser Arbeit wurde eine RGC, gefunden im Genom des Pilzes Catenaria anguillulae aus der Abteilung der Blastocladiomycota, spektroskopisch untersucht. Zu diesem Zweck wurde ein FTIR- und UV-Vis-spektroskopischer Messaufbau entwickelt, der eine parallele Aufzeichnung von UV-Vis- und FTIR-Spektren an derselben Proteinprobe erlaubt. Neben konventionellen Belichtungsmethoden, wurde ein durchstimmbarer Hochleistungspulslaser integriert, welcher den praktisch simultanen Umsatz der Proteinprobe erlaubt. Um auch früheste Prozesse spektroskopisch zu erfassen, wurde zusätzlich ein Hochdruck-Heliumkryostat integriert, der Messungen bis unterhalb des Siedepunkts von Helium ermöglicht (bis ~3 K). Nach der UV-Vis- und FTIR-spektroskopischen Charakterisierung der Photointermediate konnte ein Modell des Photozyklus abgeleitet werden, während Messungen an trunkierten Varianten eine aktive Rolle des N-Terminus in der Enzymregulation aufzeigten. Unter Verwendung eines photolabilen und nichtumsetzbaren GTP-Substrats konnte die Aktivität von RGC und freiem GC in Echtzeit spektroskopisch untersucht werden. Neben der Identifizierung des aktiven Zustands wurde entgegen bisheriger Annahmen gezeigt, dass GTP schon vor Lichtaktivierung an RGC bindet. Die Lichtregulation erfolgt demnach direkt über Modifikationen in der Bindetasche und nicht deren Zugänglichkeit. Ein Aktivierungsmechanismus wurde skizziert, der sowohl die hier vorgelegten Ergebnisse, als auch Ergebnisse vorhergehender Untersuchungen kombiniert. / Rhodopsin guanylyl cyclases (RGCs) belong to the family of enzymerhodopsins, which are characterized by light regulation of their enzyme activity by a rhodopsin (Rh). The embrane-bound Rh is linked to a type III guanylyl cyclase (GC). Upon light activation of Rh, inhibition of GC is abolished and conversion of GTP to cyclic GMP (cGMP) is initiated. The secondary messengers cGMP and the closely related cAMP play important roles in a variety of biological processes. Hence, light-controlled regulation of these messengers provides an opportunity to investigate their signaling pathways using optogenetics and could pave the way for medically useful findings. In this work, a RGC found in the genome of the fungus Catenaria anguillulae from the division of Blastocladiomycota was spectroscopically investigated. For this purpose, an FTIR and UV-Vis spectroscopic measurement setup was developed which supports parallel recording of UV-Vis and FTIR spectra of the same protein sample. In addition to conventional illumination methods, a tunable high-power pulse laser was integrated which allows virtually simultaneous turnover of the protein sample due to its pulse duration in the nanosecond and power in the megawatt range. To investigate the earliest molecular processes a high-pressure helium cryostat was integrated which allows measurements down to below the boiling point of helium (~3 K). Based upon the UV-Vis and FTIR spectroscopic characterization of the photointermediates, a model of the photocycle was derived, while experiments on truncated variants revealed an active role of the N-terminus in enzyme regulation. Using a photolabile and non-convertible GTP substrate, the activity of RGC and free GC could be investigated spectroscopically in real time. In addition to identifying the active state, it was shown, contrary to previous assumptions, that GTP binds to RGC even before light activation. Thus, light regulation occurs directly via modifications in the binding pocket rather than its accessibility. An activation mechanism was outlined that combines both the results presented here and results of previous studies.

Page generated in 0.0244 seconds