Spelling suggestions: "subject:"absolute continuous""
1 |
Absolute Continuity and the Integration of Bounded Set FunctionsAllen, John Houston 05 1900 (has links)
The first chapter gives basic definitions and theorems concerning set functions and set function integrals. The lemmas and theorems are presented without proof in this chapter. The second chapter deals with absolute continuity and Lipschitz condition. Particular emphasis is placed on the properties of max and min integrals. The third chapter deals with approximating absolutely continuous functions with bounded functions. It also deals with the existence of the integrals composed of various combinations of bounded functions and finitely additive functions. The concluding theorem states if the integral of the product of a bounded function and a non-negative finitely additive function exists, then the integral of the product of the bounded function with an absolutely continuous function exists over any element in a field of subsets of a set U.
|
2 |
On the Absence of Eigenvalues of a Matrix periodic Schroedinger Operator in a Layertanya@petrov.stoic.spb.su 21 August 2001 (has links)
No description available.
|
3 |
Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas / Rigidity and semi rigidity of Lyapunov exponents i n higher dimension and pathological foliationsCosta, José Santana Campos 24 April 2017 (has links)
Neste trabalho nós estudamos os expoentes de Lyapunov de aplicações f : Td → Td homotópicas a uma aplicação Anosov linear e a continuidade absoluta de folheações. Nós mostramos para algumas classes de homotopia de aplicações que a soma dos expoentes de Lyapunov está limitado pela soma dos expoentes de Lyapunov da aplicação Anosov linear. Além disso, admitindo uma propriedade conhecida como densidade uniformemente limitada (UBD) nas folheações, mostramos uma igualdade entre a soma dos expoentes de Lyapunov de f e do Anosov linear. Também construímos um conjunto C1 aberto de difeomorfismos parcialmente hiperbólicos do toro T4, preservando volume, com folheação central bidimensional não compacta e não absolutamente contínua. Ainda construímos um exemplo parcialmente hiperbólico com folhas centrais bidimensionais, não compactas onde a desintegração do volume ao longo da folheação central não é nem Lebesgue nem atômica. / In this work we study the Lyapunov exponents of maps f : Td → Td homotopic to a linear Anosov map. We proof for some homotopic classes of maps which the sum of Lyapunov exponents is bounded by the sum of the Lyapunov exponents of the linear Anosov map. Moreover, by assuming a property known as uniformly bounded density (UBD) in the foliations, we show an equality between the sum of the Lyapunov exponents of f and the linear Anosov. We also construct an C1 open set of volume preserving partially hyperbolic diffeomorphisms with non compact two dimensional center foliation and non absolutely continuous. We still build an example of partially hyperbolic diffeomorphism with non compact bidimensional center leaves where the disintegration of volume along the center foliation is neither Lebesgue nor atomic.
|
4 |
Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas / Rigidity and semi rigidity of Lyapunov exponents i n higher dimension and pathological foliationsJosé Santana Campos Costa 24 April 2017 (has links)
Neste trabalho nós estudamos os expoentes de Lyapunov de aplicações f : Td → Td homotópicas a uma aplicação Anosov linear e a continuidade absoluta de folheações. Nós mostramos para algumas classes de homotopia de aplicações que a soma dos expoentes de Lyapunov está limitado pela soma dos expoentes de Lyapunov da aplicação Anosov linear. Além disso, admitindo uma propriedade conhecida como densidade uniformemente limitada (UBD) nas folheações, mostramos uma igualdade entre a soma dos expoentes de Lyapunov de f e do Anosov linear. Também construímos um conjunto C1 aberto de difeomorfismos parcialmente hiperbólicos do toro T4, preservando volume, com folheação central bidimensional não compacta e não absolutamente contínua. Ainda construímos um exemplo parcialmente hiperbólico com folhas centrais bidimensionais, não compactas onde a desintegração do volume ao longo da folheação central não é nem Lebesgue nem atômica. / In this work we study the Lyapunov exponents of maps f : Td → Td homotopic to a linear Anosov map. We proof for some homotopic classes of maps which the sum of Lyapunov exponents is bounded by the sum of the Lyapunov exponents of the linear Anosov map. Moreover, by assuming a property known as uniformly bounded density (UBD) in the foliations, we show an equality between the sum of the Lyapunov exponents of f and the linear Anosov. We also construct an C1 open set of volume preserving partially hyperbolic diffeomorphisms with non compact two dimensional center foliation and non absolutely continuous. We still build an example of partially hyperbolic diffeomorphism with non compact bidimensional center leaves where the disintegration of volume along the center foliation is neither Lebesgue nor atomic.
|
5 |
Viana maps and limit distributions of sums of point measuresSchnellmann, Daniel 17 December 2009 (has links) (PDF)
This thesis consists of five articles mainly devoted to problems in dynamical systems and ergodic theory. We consider non-uniformly hyperbolic two dimensional systems and limit distributions of point measures which are absolutely continuous with respect to the Lebesgue measure. Let $f_{a_0}(x)=a_0-x^2$ be a quadratic map where the parameter $a_0\in(1,2)$ is chosen such that the critical point $0$ is pre-periodic (but not periodic). In Papers A and B we study skew-products $(\th,x)\mapsto F(\th,x)=(g(\th),f_{a_0}(x)+\al s(\th))$, $(\th,x)\in S^1\times\real$. The functions $g:S^1\to S^1$ and $s:S^1\to[-1,1]$ are the base dynamics and the coupling functions, respectively, and $\al$ is a small, positive constant. Such quadratic skew-products are also called Viana maps. In Papers A and B we show for several choices of the base dynamics and the coupling function that the map $F$ has two positive Lyapunov exponents and for some cases we further show that $F$ admits also an absolutely continuous invariant probability measure. In Paper C we consider certain Bernoulli convolutions. By showing that a specific transversality property is satisfied, we deduce absolute continuity of the to these Bernoulli convolutions associated distributions. In Papers D and E we consider sequences of real numbers in the unit interval and study how they are distributed. The sequences in Paper D are given by the forward iterations of a point $x\in[0,1]$ under a piecewise expanding map $T_a:[0,1]\to[0,1]$ depending on a parameter $a$ contained in an interval $I$. Under the assumption that each $T_a$ admits a unique absolutely continuous invariant probability measure $\mu_a$ and that some technical conditions are satisfied, we show that the distribution of the forward orbit $T_a^j(x)$, $j\ge1$, is described by the distribution $\mu_a$ for Lebesgue almost every parameter $a\in I$. In Paper E we apply the ideas in Paper D to certain sequences which are equidistributed in the unit interval and give a geometrical proof of an old result by Koksma.
|
6 |
Viana maps and limit distributions of sums of point measuresSchnellmann, Daniel January 2009 (has links)
No description available.
|
7 |
Das absolutstetige Spektrum eines Matrixoperators und eines diskreten kanonischen Systems / The absolutely continuous spectrum of a matrix operator and a discrete canonical systemFischer, Andreas 19 April 2004 (has links)
In the first part of this thesis the spectrum of a matrix operator is determined. For this the coefficients of the matrix operator are assumed to satisfy rather general properties which combine smoothness and decay. With this the asymptotics of the eigenfunctions can be determined. This in turn leads to properties of the spectra with the aid of the M-matrix. In the second part it will be shown that if a discrete canonical system has absolutely continuous spectrum of a certain multiplicity, then there is a corresponding number of linearly independent solutions y which are bounded in a weak sense.
|
8 |
Stetigkeit in der StatistikHuschens, Stefan 30 March 2017 (has links) (PDF)
Es werden verschiedene Stetigkeitskonzepte, die in der statistischen Theorie und Methodik eine Rolle spielen, erläutert.
|
9 |
Condições de otimalidade em cálculo das variações no contexto não-suave / Optimality conditions in calculus of variations in the non-smooth contextSignorini, Caroline de Arruda [UNESP] 07 March 2017 (has links)
Submitted by CAROLINE DE ARRUDA SIGNORINI null (carolineasignorini@gmail.com) on 2017-03-22T17:30:47Z
No. of bitstreams: 1
Dissertação - versão definitiva [22.03.2017].pdf: 1265324 bytes, checksum: cb95983dd59698aa1bb765a4dd7f9866 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-23T13:46:47Z (GMT) No. of bitstreams: 1
signorini_ca_me_sjrp.pdf: 1265324 bytes, checksum: cb95983dd59698aa1bb765a4dd7f9866 (MD5) / Made available in DSpace on 2017-03-23T13:46:47Z (GMT). No. of bitstreams: 1
signorini_ca_me_sjrp.pdf: 1265324 bytes, checksum: cb95983dd59698aa1bb765a4dd7f9866 (MD5)
Previous issue date: 2017-03-07 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nosso principal propósito neste trabalho é o estudo de condições necessárias e suficientes de otimalidade para problemas de Cálculo das Variações no contexto não-suave. Este estudo partirá da formulação básica suave, passando por problemas com restrições Lagrangianas, até o caso em que consideramos Lagrangianas não-suaves e soluções absolutamente contínuas. Neste caminho, abordaremos um importante avanço na teoria de Cálculo das Variações: os resultados de existência e regularidade de soluções. Além das condições necessárias, analisaremos as condições suficientes através de um conceito de convexidade generalizada, o qual denominamos E-pseudoinvexidade. / Our main purpose in this work is the study of necessary and sufficient optimality conditions for Calculus of Variations problems in the nonsmooth context. This study will comprehend the smooth basic formulation, constrained problems (with Lagrangian restrictions), non-smooth Lagrangians and absolutely continuous solutions. Moreover, we will approach an important advance in Calculus of Variations theory: the existence and regularity of solutions. In addition to necessary conditions, we will analyze sufficient conditions through a generalized convexity concept, which we called E-pseudoinvexity. / FAPESP: 2014/24271-6
|
10 |
Aplicaciones separadoras sobre espacios de funciones. Representación y continuidad automáticaDubarbie Fernández, Luis 01 October 2010 (has links)
Esta Tesis se enmarca dentro del estudio de las aplicaciones lineales entre subespacios de funciones continuas definidas en espacios métricos y que toman valores en espacios normados. En concreto, el Capítulo 1 está dedicado al estudio de las aplicaciones separadoras entre espacios de funciones absolutamente continuas. En el Capítulo 2 consideramos aplicaciones biseparadoras definidas entre espacios de funciones de Lipschitz. Por otro lado, las isometrías entre espacios de funciones de Lipschitz se estudian en el Capítulo 3 y, finalmente, analizaremos las aplicaciones que preservan ceros comunes entre ciertos subespacios de funciones continuas que incluyen, entre otros, los mencionados anteriormente.Así, nuestro objetivo es proporcionar algunos resultados acerca de la representación de las aplicaciones lineales consideradas. Además, observamos que la continuidad de las aplicaciones biseparadoras y de las que preservan ceros comunes se puede deducir de manera automática bajo ciertas condiciones. / In this Thesis we deal with linear maps between subspaces of continuous functions defined on metric spaces and taking values in normed spaces. In particular, the Chapter 1 is devoted to study separating maps between spaces of absolutely continuous functions. In Chapter 2 we consider biseparating maps between Lipschitz function spaces. On the other hand, the isometries between spaces of Lipschitz functions are studied in Chapter 3 and, finally, we consider maps preserving common zeros between some subspaces of continuous functions, which include the subspaces given above.Therefore, our aim is providing some results about the representation of each linear map that we consider in this Thesis. Besides, the automatic continuity of biseparating maps and maps preserving common zeros is derived in some cases.
|
Page generated in 0.0663 seconds