• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 460
  • 87
  • 74
  • 64
  • 48
  • 39
  • 16
  • 10
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 990
  • 130
  • 83
  • 78
  • 76
  • 70
  • 65
  • 65
  • 63
  • 62
  • 58
  • 57
  • 54
  • 51
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Modeling Ion Acceleration Using LSP

McMahon, Matthew M. January 2015 (has links)
No description available.
122

Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

Willis, Christopher Ryan 21 November 2016 (has links)
No description available.
123

Leveraging Microscience to Manipulate Laser-Plasma Interactions at Relativistic Intensities

Snyder, Joseph Clinton 08 August 2017 (has links)
No description available.
124

Laser Beam Pathway Design and Evaluation for Dielectric Laser Acceleration

Rasouli, Karwan January 2019 (has links)
After nearly 100 years of particle acceleration, particle accelerator experiments continue providing results within the field of high energy physics. Particle acceleration is used worldwide in practical applications such as radiation therapy and materials science research. Unfortunately, these accelerators are large and expensive. Dielectric Laser Acceleration (DLA) is a promising technique for accelerating particles with high acceleration gradients, without requiring large-scale accelerators. DLA utilizes the electric field of a high energy laser to accelerate electrons in the proximity of a nanostructured dielectric surface.The aim of this project was limited to laser beam routing and imaging techniques for a DLA experiment. The goal was to design the laser beam pathway between the laser and the dielectric sample, and testing a proposed imaging system for aiming the laser. This goal was achieved in a test setup using a low-energy laser. In the main setup including a femtosecond laser, the result indicated lack of focus. For a full experimental setup, a correction of this focus is essential and the beam path would need to be combined with a Scanning Electron Microscope (SEM) as an electron source.
125

The study and development of pulsed high-field magnets for application in laser-plasma physics

Kroll, Florian 09 January 2019 (has links)
The thesis at hand addresses design, characterization and experimental testing of pulsed high-field magnets for utilization in the field of laser-plasma physics. The central task was to establish a technology platform that allows to manipulate laser-driven ion sources in a way that the accelerated ions can be used in complex application studies, e.g. radiobiological cell or tumor irradiation. Laser-driven ion acceleration in the regime of target normal sheath acceleration (TNSA) offers the unique opportunity to accelerate particles to kinetic energies of few 10MeV on the micrometer scale. The generated bunches are short, intense, show broad exponentially decaying energy spectra and high divergence. In order to efficiently use the generated particles, it is crucial to gain control over their divergence directly after their production. For most applications it additionally is favorable to reduce the energy spread of the beam. This work shows that the developed pulsed high-field magnets, so-called solenoids (cylindrical magnets), can efficiently capture, transport and focus laser-accelerated protons. The chromaticity of the magnetic lens thereby provides for energy selection. Three prototype solenoids, adapted to fit different application scenarios, and associated current pulse drivers have been developed. The magnets generate fields of several 10 T. Pulse durations are of the order of one millisecond and thus the fields can be considered as quasi-static for laser-plasma interaction processes taking place on the ps- to ns-scale. Their high field strength in combination with abandoning magnetic cores make the solenoids compact and light-weight. The presented experiments focus on a solenoid magnet designed for the capture of divergent laser-driven ion beams. They have been carried out at the 6MV tandetron accelerator and the laser acceleration source Draco of Helmholtz-Zentrum Dresden – Rossendorf as well as at the PHELIX laser of GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt.
126

SOFT RECOVERY RECORDING SYSTEM FOR INTERIOR AND EXTERIOR BALLISTICS CHARACTERIZATION

Guevara, Mauricio, Flyash, Boris 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The US ARMY, ARDEC; in cooperation with AMCOM AMRDEC, Missile Guidance and Engineering Directorates; the Office of Naval Research; Naval Surface Fire Support; and the Naval Surface Weapon Center, requires multiphase development of a common, low-cost, high G survivable, high accuracy, Micro Electro-Mechanical Systems (MEMS) Inertial Measurement Unit (IMU) and Common, Deeply Integrated, Guidance and Navigation Unit (DI-GNU) for DoD gun launched guided munition and missile applications. The challenge for the Precision Munition Instrumentation Division (PMID) was to develop a Telemetry System to record the interior and exterior ballistics of a M831 TP-T projectile, which will be used as a carrier for soft recovery testing of IMUs and GNUs. This valuable data that would help The Government and contractors develop and validate multiple MEMS IMU design efforts, culminating with live fire verification performance test of pre-production in the Army’s 155-mm Soft Recovery Vehicle (SRVs) and missiles airframes.
127

3D Magnetic Nulls and Regions of Strong Current in the Earth's Magnetosphere

Eriksson, Elin January 2016 (has links)
Plasma, a gas of charged particles exhibiting collective behaviour, can be found everywhere in our vast Universe. The characteristics of plasma in very distant parts of the Universe can be similar to characteristics in our solar system and near-Earth space. We can therefore gain an understanding of what happens in astrophysical plasmas by studying processes occurring in near Earth space, an environment much easier to reach. Large volumes in space are filled with plasma and when different plasmas interact distinct boundaries are often created. Many important physical processes, for example particle acceleration, occur at these boundaries. Thus, it is very important to study and understand such boundaries. In Paper I we study magnetic nulls, regions of vanishing magnetic fields, that form inside boundaries separating plasmas with different magnetic field orientations. For the first time, a statistical study of magnetic nulls in the Earth’s nightside magnetosphere has been done by using simultaneous measurements from all four Cluster spacecraft. We find that magnetic nulls occur both in the magnetopause and the magnetotail. In addition, we introduce a method to determine the reliability of the type identification of the observed nulls. In the manuscript of Paper II we study a different boundary, the shocked solar wind plasma in the magnetosheath, using the new Magnetospheric Multiscale mission. We show that a region of strong current in the form of a current sheet is forming inside the turbulent magnetosheath behind a quasi-parallel shock. The strong current sheet can be related to the jets with extreme dynamic pressure, several times that of the undisturbed solar wind dynamic pressure. The current sheet is also associated with electron acceleration parallel to the background magnetic field. In addition, the current sheet satisfies the Walén relation suggesting that plasmas on both sides of the current region are magnetically connected. We speculate on the formation mechanisms of the current sheet and the physical processes inside and around the current sheet.
128

Optimizing the ion source for polarized protons.

Johnson, Samantha January 2005 (has links)
Beams of polarized protons play an important part in the study of the spin dependence of the nuclear force by measuring the analyzing power in nuclear reactions. The source at iThemba LABS produces a beam of polarized protons that is pre-accelerated by an injector cyclotron (SPC2) to a energy of 8 MeV before acceleration by the main separated-sector cyclotron to 200 MeV for physics research. The polarized ion source is one of the two external ion sources of SPC2. Inside the ion source hydrogen molecules are dissociated into atoms in the dissociator and cooled to a temperature of approximately 30 K in the nozzle. The atoms are polarized by a pair of sextupole magnets and the nucleus is polarized by RF transitions between hyperfine levels in hydrogen atoms. The atoms are then ionized by electrons in the ionizer. The source has various sensitive devices, which influence beam intensity and polarization. Nitrogen gas is used to prevent recombination of atoms after dissociation. The amount of nitrogen and the temperature at which it is used plays a very important role in optimizing the beam current. The number of electrons released in the ionizer is influenced by the size and shape of the filament. Optimization of the source will ensure that beams of better quality (a better current and stability) are produced.
129

Computer simulation of the sprint start

Jessop, David January 2011 (has links)
The aim of this project was to investigate the mechanics of the sprint start through the use of computer simulation. Experimental data was collected on one male athlete in accordance with a procedure agreed by Loughborough University Ethical Advisory Committee. The data provided subject specific data for the creation of a four and fourteen segment, angle and torque driven models of the sprint start. The models simulated the start from the moment of onset of force production until takeoff from the starting block. The four segment model comprised a head and trunk, thigh, shank and foot whilst the fourteen segment model also included a lower spine and pelvis, upper arms, forearms and hands, as well as the other leg including two segment feet. Subject specific torque data was combined with EMG data to provide input to the torque models Results from the four segment angle driven model demonstrated that the participant will benefit from using smaller joint angles than usual in the set position as this resulted in increased velocity on takeoff with minimal increase in movement time. The model also showed large joint torques during such starts and so suggested that this is likely to limit start performance. The four segment torque driven model also revealed that optimal joint angles exist for the hip and knee but such a result was not clear for the ankle. For this model the optimum angle at the hip was 73 (the smallest tested) and 108 at the knee which was the athlete's usual angle. Increasing the athlete's strength parameters resulted in a small increase in horizontal velocity on takeoff for some simulations and all simulations had enhanced acceleration. Increasing initial muscle activations didn't increase horizontal takeoff velocity but did also increase horizontal acceleration. The fourteen segment angle driven model was used to optimise spring parameters for input into a torque driven model. The fourteen segment torque driven model simulated movements and forces realistically but an adequate match was not found to the sprint start performance of the participant due to long simulation times and lack of computing power.
130

Hur tar man hand om elever som vill ha ett accelererande eller berikande stöd i matematik? : En fallstudie på en stor gymnasieskola i Stockholmsområdet

Larsson, Håkan January 2016 (has links)
En fallstudie på en stor gymnasieskola i Stockholmsområdet genomfördes under HT-2016, genom en kvalitativ semistrukturerad intervjustudie. Alla elva elever på skolan med ett accelererande eller berikande stöd i matematik, inom ramen för den egna klassen, ingår i studien tillsammans med deras åtta olika lärare. Totalt genomfördes 15 enskilda intervjuer med ljudupptagning. Syftet med den här studien har varit att fastställa hur det aktuella stödet för de matematiskt begåvade eleverna är utformat, på den aktuella skolan, samt hur stödet är relaterat till gymnasieskolans sju förmågor. Med matematiskt begåvade elever menas här de cirka 5% av Sveriges elever som enligt Skolverket har en särskild matematisk begåvning. Ett ytterligare syfte har varit att kartlägga i vilken utsträckning elever med stödet anser att det stöd de får är tillfredsställande för dem. Studien visar att det inte finns någon policy eller strategi, på skolan, för hur elever som vill accelerera eller ha berikning skall tas om hand. Lärarna får därför göra sin egen bedömning, från fall till fall. Det framgår vidare att accelererande elever normalt fått en lärobok i en högre kurs, och därefter i princip fått klara sig själva. Berikning har tillhandahållits på i princip tre olika sätt: eleven har fått en annan lärobok i samma kurs, eleven har varit hänvisad till en speciell uppgiftsbank eller så har eleven utgjort en extra resurs i klassrummet. Stödet från läraren har vid både acceleration och berikning normalt varit mycket begränsat, på grund av tidsbrist. Studien visar även att hälften av lärarna inte själva kopplar förmågorna, i någon större utsträckning, till det stöd de ger eleverna. Den andra hälften av lärarna har däremot en relativt stark koppling till förmågorna. Analysen visar dock att det indirekt finns en relativt stark koppling till i princip alla förmågor, i det ”stöd” samtliga lärare i undersökningen ger. Slutligen, så framgår det även att hälften av de intervjuade eleverna inte är helt nöjda med sin situation på skolan, eftersom de inte blir tillräckligt utmanade. Det dessa elever saknar mest är: diskussioner med läraren eller likasinnade, svårare övningsuppgifter samt en egen lärarledd matematikgrupp.

Page generated in 0.1229 seconds