• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étude du rôle de la protéine Vpr du VIH-1 dans la modulation de la réponse immunitaire

Richard, Jonathan 06 1900 (has links)
L’infection par le VIH-1 est caractérisée par une activation chronique du système immunitaire et par une réduction graduelle du nombre de lymphocytes TCD4+, qui contribuent à une détérioration lente du système immunitaire menant à la phase SIDA. Paradoxalement, ce sont majoritairement des lymphocytes T CD4+ non infectés qui sont détruits et la cause de ce phénomène reste encore inconnue. Certaines protéines virales, dont la protéine accessoire Vpr, sont soupçonnées de jouer un rôle dans ce processus. Synthétisée tardivement, Vpr est incorporée à l’intérieur des virions, en plus d’être relâchée sous forme soluble dans le milieu extracellulaire. La principale fonction biologique de Vpr est l’induction d’un arrêt de cycle en phase G2/M, via le recrutement du complexe d’ubiquitine E3 ligase CUL4A-DDB1VprBP et l’activation de la voie de dommage à l’ADN contrôlée par la kinase ATR. Une étude démontre que l’activation des voies de dommages à l’ADN conduit à l’expression de ligands du récepteur activateur NKG2D, exprimés par les cellules NK, déclenchant leurs fonctions cytolytiques. Chose intéressante, plusieurs études suggèrent que le VIH-1 régule positivement l’expression des ligands de NKG2D à la surface des lymphocytes T CD4+ infectés. Cependant, le facteur viral impliqué dans ce processus reste encore indéfini. Le but de cette thèse était d’évaluer le rôle de Vpr dans la modulation des fonctions cytolytiques des cellules NK et son implication potentielle dans la destruction des lymphocytes T CD4+. Nos travaux ont permis de démontrer que l’expression de Vpr, seule ou dans le contexte de l’infection, est suffisante afin d’augmenter spécifiquement l’expression du ligand de NKG2D, ULBP2, au niveau de lymphocytes T CD4+ primaires. Conséquemment, Vpr augmente ainsi la susceptibilité de ces cellules à une lyse par des cellules NK autologues. Nous démontrons que cette régulation positive d’ULBP2 repose sur la capacité de Vpr de recruter le complexe d’ubiquitine E3 ligase DDB1-CUL4AVprBP et l’activation de la voie de dommage à l’ADN ATR. Plus important encore, nous apportons des preuves que Vpr augmente également l’expression d’ULBP2 au niveau des cellules non infectées lors d’une infection de lymphocytes TCD4+ par le VIH-1. À cet effet, nous montrons que l’acheminement de Vpr au niveau de lymphocytes T CD4+ non infectés via des particules virales défectives est suffisant afin de réguler positivement ULBP2 et d’augmenter leur lyse par des cellules NK autologues. De plus, nous décrivons pour la première fois que Vpr, sous forme soluble, a la capacité d’induire des dommages à l’ADN et de réguler positivement ULBP2 suite à la transduction de différents types cellulaires, incluant des cellules T. Globalement, nos résultats démontrent que Vpr est un facteur viral clé impliqué dans la régulation positive des ligands de NKG2D induite par le VIH-1. Cette régulation positive d’ULBP2 pourrait alors contribuer à la destruction des lymphocytes T CD4+ infectés et non infectés via l’activation des fonctions cytolytiques des cellules NK. Une meilleure compréhension de la contribution de cette activité de Vpr dans la pathogenèse du VIH-1 a le potentiel de permettre le développement de nouvelles cibles ou stratégies thérapeutiques contre le VIH-1. / Chronic immune activation and gradual depletion of CD4+ T cells are hallmarks of HIV-1 infection, which are thought to contribute to the progressive deterioration of the host’s immune response that ultimately leads to AIDS. Paradoxically, the majority of CD4+ T cells that are destroyed are uninfected and causes for this bystander effect of infection on CD4+ T cells remains unclear. Some HIV-1 proteins, including the accessory protein Vpr, are suspected to play a role in this process. Vpr, expressed late during HIV-1 infection, is shown to be incorporated within the budding virions as well as secreted as soluble protein in the extracellular medium from the infected cells. The main biological function of Vpr is the induction of a G2/M cell-cycle arrest through the recruitment of the E3 ubiquitin ligase complex DDB1-CUL4AVprBP and activation of the ATR-mediated DNA damage pathway. One study showed that activation of DNA damage pathways leads to the expression of specific ligands for the activating receptor NKG2D expressed on NK cells, thus triggering NK cell cytolytic function. Interestingly, several evidences suggest that HIV-1 upregulates expression of specific NKG2D ligands on infected CD4+ T cells. However, the viral factor involved in this process remains undefined. The aim of this thesis was to evaluate the role of Vpr in modulating NK cell cytolytic function and its potential involvement in CD4+ T cells depletion. Our work demonstrated that the expression of Vpr, alone or in the context of HIV-1 infection, is sufficient to specifically increase expression of the NKG2D ligand, ULBP2, on primary CD4+ T cells. Consequently, these CD4 T cells become more susceptible to autologuous NK cell-mediated lysis. Our studies have shown that this Vpr-mediated ULBP2 upregulation requires the recruitment of the E3 ubiquitin ligase complex DDB1-CUL4AVprBP and the activation of the ATR-mediated DNA damage pathway. More importantly, we provide evidence that Vpr augments ULBP2 expression on both infected and uninfected bystander cells during HIV-1 infection of primary CD4+ T lymphocytes. In that context, we show that delivery of Vpr into uninfected cells via defective viral particles is sufficient to upregulate ULBP2 and increase their susceptibility to autologuous NK cell-mediated killing. In addition, we describe for the first time that soluble Vpr has the ability to induce DNA damages and upregulate ULBP2 upon transducing target cells, including T cells. Overall, our results show that Vpr is a key HIV-1 factor involved in the upregulation of NKG2D ligands induced by HIV-1. This upregulation of UBP2 might contribute to depletion of infected and uninfected CD4 + T cells through activation of NK cell cytolytic functions. A better understanding of the contribution of this new activity of Vpr in HIV-1 pathogenesis has the potential to enable the development of new therapeutic targets or therapeutic strategies against HIV-1.
12

Étude du rôle de la protéine Vpr du VIH-1 dans la modulation de la réponse immunitaire

Richard, Jonathan 06 1900 (has links)
No description available.
13

Détection innée des cellules infectées au VIH-1 par les cellules dendritiques plasmacytoïdes : étude du rôle régulateur de la protéine Vpu de souches pandémiques et non pandémiques

Laliberté, Alexandre 08 1900 (has links)
Le virus de l’immunodéficience humaine (VIH), responsable du syndrome de l’immunodéficience acquise (SIDA), a touché environ 70 millions d’individus, dont environ la moitié en sont morts. Bien qu’il existe aujourd’hui des traitements efficaces pour prévenir la progression du SIDA, il n’y a actuellement ni vaccin, ni traitement qui ne guérisse complètement. Les cellules dendritiques plasmacytoïdes (pDC) permettent de limiter l’établissement de l’infection en sécrétant des quantités importantes d’interféron de type I (IFN-I) en réponse à la détection du VIH. L’IFN-I permet non seulement d’établir un environnement antiviral, mais aussi d’amorcer la réponse immunitaire innée. Cette réponse des pDCs est régulée notamment par le récepteur immunoglobulin-like transcript 7 (ILT7) dont l’activation par son ligand, bone marrow stromal antigen 2 (BST2), réprime la production d’IFN. BST2 est par ailleurs un facteur de restriction du VIH-1 qui agit en retenant les particules virales à la surface des cellules infectées, limitant ainsi la dissémination du virus. La protéine accessoire Vpu du VIH-1 contrecarre l’action de BST2 sur la relâche virale par une régulation négative des niveaux de surface et par un déplacement hors des sites d’assemblages viraux. Ce déplacement, qui permet l’activation d’ILT7 par BST2, a un rôle double, soit d’augmenter la relâche virale par les cellules infectées, mais aussi de limiter la production d’IFN-I par les pDCs. Par une analyse de variants de Vpu provenant de souches pandémiques et non pandémiques du VIH-1, cette étude indique que cette fonction de Vpu est majoritairement associée au groupe pandémique M avec l’exception notable du sous-groupe C, responsable d’environ la moitié des infections mondiales. Ce phénotype des variants du sous-groupe C est associé à une incapacité à déplacer BST2 dans des cellules T infectées. Des analyses fonctionnelles où des cellules infectées détectées par des pDCs révèlent cependant que les protéines Vpu incapables d’augmenter l’activation d’ILT7 médiée par BST2 ont possiblement développé d’autres mécanismes pour limiter la production d’IFN-I par les pDCs, par exemple la limitation des contacts entre les cellules infectées et les pDCs afin de réduire la détection. / Human immunodeficiency virus (HIV), which is responsible for acquired immune deficiency syndrome (AIDS) has infected over 70 million people, approximately half of which have died from the illness. While there are treatments today that can prevent progression towards AIDS, there is currently no vaccine and no treatment that would completely cure people living with HIV. Plasmacytoid dendritic cells (pDC) limit the establishment of the infection by producing large amounts of type-I IFN (IFN-I) after sensing HIV. IFN-I not only establishes an antiviral environment, but also initiates the innate immune response. This pDC response is regulated, in part, by the pDC-specific receptor immunoglobulin-like transcript 7 (ILT7), which inhibits IFN-I production, upon engagement of its ligand, bone marrow stromal antigen 2 (BST2). BST2 is also an HIV host restriction factor that tethers budding virions at the surface of the infected cell, to limit spread. The HIV-1 accessory protein Vpu counteracts BST2’s restriction through downregulation at the cell surface and displacement away from viral assembly sites. This displacement, which enables ILT7 activation, has a double role: relieving the restriction by BST2 on viral release and repressing IFN-I by pDCs. We screened Vpu variants from pandemic and non-pandemic HIV-1 strains, and found that this function is mostly present in the pandemic group M, although not in variants from clade C which are responsible for half of the global infections. This phenotype in the clade C variants tested was associated with an inability to efficiently displace BST2 in infected T cells. Functional analyses in sensing assays, however, reveal that Vpu variants unable to enhance BST2-mediated ILT7 activation may have evolved compensatory mechanisms to dampen IFN-I production by p
14

Identification and Characterization of SNAPIN as a Novel Antagonist of HIV-1 Egress: A Dissertation

Younan, Patrick 05 April 2010 (has links)
Vpu has been shown to possess two distinct roles in the pathogenesis of HIV. First, Vpu has been shown to down-regulate the expression of CD4 molecules at the plasma membrane of infected cells by targeting CD4 molecules for degradation in the endoplasmic reticulum. Second, Vpu promotes viral egress in specific cell lines termed non-permissive cells by mechanism that remain relatively unclear. Therefore, experiments were conducted in order to identify cellular factors involved in the Vpu-dependent phenotype. Using full-length Vpu as bait in yeast two-hybrid experiments, several candidate cellular factors were identified. One protein, SNAPIN, was identified as a cellular factor putatively involved in the Vpu-dependent phenotype. Further experiments determined that not only do SNAPIN and Vpu interact, but that Vpu also leads to the degradation of SNAPIN by both proteasomal and lysosomal degradation pathways. Over-expression of SNAPIN in cell lines that do not normally require Vpu expression for viral production resulted in a Vpu-dependent phenotype. While over-expression of SNAPIN in otherwise permissive cell lines significantly reduced Vpu-deficient virus production, wild type levels remained relatively constant. Importantly, no defective viral structural protein production was observed; however, intracellular p24/p55 did not accumulate suggesting that in SNAPIN expressing cells, Gag is also targeted for degradation. In addition, the reduction of SNAPIN expression in non-permissive cell lines significantly increased viral titers in supernatants. Of particular interest, even in cells expressing Bst-2 (a previously identified cellular factor involved in the Vpu-phenotype), siRNA mediated knockdown of SNAPIN led to increased viral titers. In addition, the co-transfection of siRNAs targeting both SNAPIN and Bst-2 resulted in an additive effect, in which Vpu-deficient viral titers were nearly equivalent to wild-type titers. Surprisingly, siRNA-mediated knockdown of SNAPIN in Jurkat cells was sufficient to overcome any restriction in viral egress imposed by the deletion of Vpu. Conversely, siRNA targeting Bst-2 had little or no effect on viral titers in Jurkat cells regardless of whether it was transfected alone or in combination with siRNAs targeting SNAPIN. These experiments provide evidence of an alternate cellular restriction mechanism involved in viral egress that is countered by the HIV-1 accessory protein, Vpu. In addition, this research may provide further insight into the complex cellular networks involved in the trafficking of Gag through cellular endosomal pathways.
15

Mutations in the <em>vpu</em> and <em>env</em> Genes of HIV-1 Can Adversely Impact Infectivity: A Dissertation

Richards, Kathryn H. 12 May 2008 (has links)
The Human Immunodeficiency Virus (HIV) is able to infect CD4+ T cells as well as macrophages. Macrophage-tropism has been linked to determinants in the envelope of HIV. These determinants allow envelopes to exploit low levels of CD4 for infection. Macrophages are an important reservoir of virus, especially during chronic infection, and are likely responsible for the bulk of virus produced after CD4+T cells have declined. Viral factors that may impact the ability to infect macrophages are worth studying because this cell type is so important in infection. It was previously reported that the macrophage-tropic primary isolate AD8 was vpu-independent. The molecular clone YU-2, derived from brain tissue without culture, was also reported to be macrophage-tropic despite having a mutation in the vpu start codon. It was therefore possible that vpu-independent envelopes could evolve in vivo. To examine this possibility, I constructed chimeras containing wild type or defective vpu start codons, and gp160 sequences from AD8, YU-2 or SF162 (a vpu-dependent control). I also used full length AD8 and YU-2 with wild type or defective vpu start codons. I infected macrophages with equal amounts of virus, and measured viral output over two weeks. Viruses with defective vpu start codons were released to lower levels compared to their wild type vpucounterparts. In contrast to previous reports, the AD8 envelope is not vpu-independent for replication in macrophages. The YU-2 envelope is also not vpu-independent. Macrophage-tropic envelopes from late stages of infection can be sensitive to antibodies that bind the CD4 binding site on gp120, implying that macrophage-tropic envelopes have more exposed CD4 binding sites. Neutralizing antibodies may act as modulators of macrophage-tropism over the course of infection. Using chimeras containing gp120 sequences derived from the PBMC of four HIV+patients, I examined the capacity for envelopes to infect macrophages. Three patients (MM1, 4, and 8) had macrophage-tropic envelopes before and after developing autologous neutralizing antibodies. Three patients (MM1, 4, and 23) developed heterologous antibodies against IIIB, an easily neutralized T-cell line adapted strain of HIV-1. This data indicates that macrophage-tropism in these patients is not modulated by the presence of neutralizing antibodies. The macrophage-tropism of envelopes tends to segregate depending on the tissue origin of the virus. Envelopes from two separate tissues from the same patient exhibit very different infectivity characteristics. The B33 envelope, from brain tissue, is very infectious and is macrophage-tropic, while the LN40 envelope, from lymph node tissue, is weakly infectious and is not macrophage-tropic. Replacing the entire gp41 of LN40 with that of B33 restores some infectivity to LN40. The cytoplasmic domain of gp41 contains many motifs important for assembly and infectivity. To examine which motifs are responsible for the weak infectivity of LN40, I made chimeras of gp41, as well as point mutations in gp41. The LN40 chimera containing the entire gp41 of B33 restored the most infectivity. Point mutations in the palmitoylation site, Pr55gagbinding region, and dileucine motif at the C-terminus also restored infectivity when combined. Determinants in the gp41 cytoplasmic domain are responsible for the weak infectivity of LN40; however, it is possible that there are contributing determinants in gp120, such as the ability to use low levels of CD4. Here, I examined how changes in the vpu and env genes of HIV-1 can impact infectivity, especially infectivity of macrophages. Changes that adversely impact the virus’ ability to infect macrophages may also impact the overall course of disease. However, the data here show that retaining the ability to infect, and replicate in, macrophages give HIV an advantage. I speculate that retaining the ability to infect macrophages gives the virus a reservoir for later in disease, when CD4+ T cells have been depleted, as well as way of avoiding neutralizing antibodies. This work further defines the importance of macrophages in HIV-1 infectivity and disease.

Page generated in 0.066 seconds