• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 2
  • 2
  • 2
  • Tagged with
  • 47
  • 47
  • 11
  • 10
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

One-sided ultrasonic determination of third order elastic constants using angle-beam acoustoelasticity measurements

Muir, Dave D. 12 May 2009 (has links)
This thesis describes procedures and theory for a family of one-sided ultrasonic methods for determining third order elastic constants (TOEC) using sets of angle-beam wedges mounted on one side of a specimen. The methods are based on the well-known acoustoelastic effect, which is the change of wave speed with applied loads and is a consequence of the mechanical nonlinearity of a material. Increases in material nonlinearity have been correlated to the progression of damage, indicating that tracking changes in TOECs may provide a practical means of monitoring damage accumulation at the microstructural level prior to formation of macroscopic defects. Ultrasonic methods are one of the only ways to measure TOECs, and most prior techniques have utilized wave propagation paths parallel and perpendicular to the loading directions. A few additional ultrasonic techniques reported in the literature have employed oblique paths but with immersion coupling. These reported techniques are generally unsuitable for field implementation. The one-sided contact approach described here is applicable for in situ measurements of TOECs and thus lays the foundation for tracking of TOECs with damage. Theory is reviewed and further developed for calculating predicted velocity changes, and thus time shifts, as a function of uniaxial tensile loading for longitudinal, shear vertical, and shear horizontal waves in the context of angle-beam transducers mounted on the surface of the specimen. A comparison is made to published results where possible. The inverse problem of determining the three TOECs of an isotropic material from three measurements employing three different angle beam configurations is comprehensively analyzed. Four configurations providing well-posed solutions are identified and examined. A detailed sensitivity analysis is carried out to identify the best mounting configuration, wave mode combinations, refracted angles and geometry requirements for recovering the three TOECs. Two transducer mounting configurations are considered: (1) attached (glued-on) transducers potentially suitable for in situ monitoring, and (2) floating (oil-coupled) transducers potentially suitable for single measurements. Limited experimental results are presented for the attached case using two longitudinal measurements and one shear vertical measurement. The floating case experiments utilized three of the four well-posed solutions, and measurements were made on several aluminum alloys and low carbon steel. Key experimental issues are identified and discussed for both transducer mounting configurations.
32

Seafloor ripples created by waves from hurricane Ivan on the west Florida shelf

Bowers, Colleen Marie January 2006 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (leaves 94-96). / Recent studies have shown that the presence of sand ripples on the seabed improves sonar detection of buried mines at sub-critical angles. Sidescan sonar data of ripples off on the west Florida shelf were collected as part of ONR's Ripples Departmental Research Initiative (DRI) September 26-29th and November 7-9th, 2004. Hurricane Ivan, the strongest storm of the 2004 hurricane season, passed over the experiment site a week before the first data collection. This study focuses on the ripples created by Ivan. Average relict ripple wavelengths left after the storm were found to increase with water depth (50 cm, 62 cm, and 83 cm in 20, 30, and 50 meter water depths) despite the fact that orbital diameter decreases with water depth. Ripple prediction requires information about surface gravity waves and sediment grain size. The most reliable offshore wave field available was created with Wavewatch III by Naval Postgraduate School scientists. These waves were inputted into Delft3D WAVE, incorporating the nearshore wave model SWAN to predict waves at the locations where ripples were measured. Orbital motions at the seabed and grain size were inputted into a time-dependent ripple model with varying dissipation parameters to estimate sand ripples created by Hurricane Ivan. Ripple wavelength was found to be more strongly dependent on grain size than wave dissipation. / by Colleen Marie Bowers. / S.M.
33

Mechanical, thermal and acoustic properties of rubberised concrete incorporating nano silica

El-Khoja, Amal M.N. January 2019 (has links)
Very limited research studies have been conducted to examine the behaviour of rubberised concrete (RuC) with nano silica (NS) and addressed the acoustic benefits of rubberised concrete. The current research investigates the effect of incorporating colloidal nano silica on the mechanical, thermal and acoustic properties of Rubberised concrete and compares them with normal concrete (NC). Two sizes of rubber were used RA (0.5 – 1.5 mm) and RB (1.5 – 3 mm). Fine aggregate was replaced with rubber at a ratio of 0%, 10%, 20% and 30% by volume, and NS is used as partial cement replacement by 0%, 1.5% and 3%. A constant water to cement ratio of 0.45 was used in all concrete mixes. Various properties of rubberised concrete, including the density, water absorption, the compressive strength, the flexural strength, splitting tensile strength and the drying shrinkage of samples was studied as well as thermal and acoustic properties. Experimental results of compressive strength obtained from this study together with collected comprehensive database from different sources available in the literature were compared to five existing models, namely Khatib and Bayomy- 99 model, Guneyisi-04 model, Khaloo-08 model, Youssf-16 model, and Bompa-17 model. To assess the quality of predictive models, influence of rubber content on the compressive strength is studied. An artificial neural network (ANN) models were developed to predict compressive strength of RuC using the same data used in the existing models. Three ANN sets namely ANN1, ANN2 and ANN3 with different numbers of hidden layer neurons were constructed. Comparison between the results given by the ANN2 model and the results obtained by the five existing predicted models were presented. A finite element approach is proposed for calculating the transmission loss of concrete, the displacement in the solid phase and the pressure in the fluid phase is investigated. The transmission loss of the 50mm concrete samples is calculated via the COMSOL environment, the results from the simulation show good agreement with the measured data. The results showed that, using up to 20% of rubber as fine aggregate with the addition of 3% NS can produce a higher compressive strength than the NC. Experimental results of this research indicate that incorporating nano silica into RuC mixes enhance sound absorption and thermal conductivity compared to normal concrete (NC) and rubberised concrete without nano silica. This work suggests that it is possible to design and manufacture concrete which can provide an improvement to conventional concrete in terms of the attained vibro-acoustic and thermal performance. / Libyan Ministry of Higher Education
34

Acoustic scattering from sand dollars (Dendraster Excentricus) : modeling as high aspect ratio oblate objects and comparison to experiment

Dietzen, Gregory C January 2008 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references (p. 145-149). / Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low grazing angles. Among the effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor. Sand dollars (Dendraster excentricus) occur commonly in the ocean and have been shown to be significant scatters of sound. In order to understand more fully the scattering mechanisms of these organisms, the scattering from individual sand dollars was studied using several methods. Using an approximation to the Helmholtz-Kirchhoff integral, the Kirchhoff method gives an analytic integral expression to the backscattering from an object. This integral was first solved analytically for a disk and a spherical cap, two high aspect ratio oblate shapes which simplify the shape of an individual sand dollar. A method for solving the Kirchhoff integral numerically was then developed. An exact three dimensional model of a sand dollar test was created from computed tomography scans. The Kirchhoff integral was then solved numerically for this model of the sand dollar. The finite element method, a numerical technique for approximating the solutions to partial differential equations and integral equations, was used to model the scattering from an individual sand dollar as well. COMSOL Multiphysics was used for the implementation of the finite element method. Modeling results were compared with published laboratory experimental data from the free field scattering of both an aluminum disk and a sand dollar. Insight on the scattering mechanisms of individual sand dollar, including elastic behavior and diffraction effects, was gained from these comparisons. / by Gregory C. Dietzen. / S.M.
35

Étude des matériaux poreux thermo compressés pour la modélisation des écrans acoustiques automobiles / Study of thermocompressed porous materials for the modeling of automotive acoustic shields

Lei, Lei 06 July 2018 (has links)
Ce travail a été réalisé dans le cadre du projet EcOBEx, qui consiste à réduire le bruit du groupe motopropulseur rayonné à l'extérieur par l'ajout d'écrans acoustiques dans le compartiment moteur du véhicule. Les écrans acoustiques sont fabriqués par thermocompression de matériaux poreux uniformes. Les propriétés et l'épaisseur du matériau évoluent en fonction du degré de compression subit par le matériau. L'objectif de ce travail est de proposer des lois pour prédire l'évolution des propriétés des matériaux à partir du taux de compression et de leurs valeurs initiales avant compression. Dans un premier temps, on s'intéresse aux paramètres du modèle de fluide équivalent de Johnson-Champoux-Allard-Lafarge (JCAL) : porosité, résistivité au passage d'air, tortuosité, longueurs caractéristiques visqueuse et thermique, perméabilité thermique statique. Des expressions analytiques sont proposées pour prédire la variation de ces paramètres en fonction de la compression. Elles sont développées à partir d'un modèle de matériaux fibreux à fibres cylindriques où les variations d'orientation des fibres induites par la thermocompression peuvent être prises en compte. Les résultats sont en bon accord avec les mesures effectuées sur deux types de matériaux (mousse à cellules ouvertes et fibreux). Un modèle empirique généralisé est finalement proposé pour la résistivité au passage d'air. Dans un deuxième temps, on s'attache aux paramètres élastiques dont la connaissance est essentielle pour prendre en compte la vibration du squelette. La méthode expérimentale quasistatique est d'abord appliquée pour étudier l'évolution du module de Young par rapport au taux de compression pour les fibres et les mousses. Une loi de puissance est alors proposée pour prédire ces variations. Enfin, une méthode inverse pour estimer les propriétés élastiques d'un matériau poroélastique orthotrope à partir d'une mesure vibratoire d'un écran tricouche thermo comprimé est proposée. Cette méthode permet de caractériser les propriétés élastiques du matériau poreux dans une situation proche de son application réelle / This work was carried out in the framework of the project EcOBEx, whose main objective was to reduce the passby noise by mean of acoustic shields in the engine compartment of the vehicle. The acoustic shields are manufactured by thermocompression of uniform porous materials. The material’s properties and thickness evolve according to the degree of compression experienced by the material. The objective of this work is to propose some laws to predict the evolution of the materials properties from their initial non compressed values and the compression rate. Firstly, we focus on the parameters of the Johnson-Champoux-Allard-Lafarge (JCAL) equivalent fluid model : porosity, air-flow resistivity, tortuosity, viscous characteristic lengths, thermal characteristic length, static thermal permeability. Some analytical expressions are proposed to predict the variation of these parameters as a function of compression. They are derived from a physical model of cylindrical fibres where the fibre orientation variations induced by the thermocompression can be taken into account. The results are in good agreement with the measurements made two types of materials (open cell foam and fibrous). A generalized empirical model is finally proposed for the air-flow resistivity.In a second part, we focus on the elastic parameters, which are necessary to take into account the vibration of the skeleton. The quasi-static experimental method is first applied to study the evolution of the Young’s modulus along the compression rate for fibrous and open cell foams. A power law is then proposed to predict these variations. Finally, an inverse method for estimating the elastic properties of an orthotropic poro-elastic material from a vibratory measurement of a thermocompressed three layer sandwich structure is proposed. This method allows us to characterize the elastic properties of a porous material in a situation close to its actual application.
36

Landmine detection with a standoff acoustic/laser technique

Doherty, John Houston January 2008 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references (p. 54-56). / Landmines and mine-like traps are effective weapons that are difficult to detect and discriminate from a safe distance. The ability to detect landmines in their host environment at a distance and to discriminate them from other objects would be valuable for countering the landmine threat. This paper explores a standoff acoustic/laser technique to discriminate landmines from other forms of man-made objects (clutter) in an urban environment. A novel approach currently under investigation by MIT Lincoln Labs, University of Mississippi, and other groups employs a non-contact acoustic/laser technique to detect landmines from a safe standoff range. This technique uses a sound source to excite vibrations in targets with an acoustic wave. These vibrations are in turn measured remotely with a Laser Doppler Vibrometer (LDV). In this thesis, the vibration responses of landmine variants are measured, analyzed, and compared to those of common urban objects likely to be found on a landmine field or roadside. The Fourier Transform of the vibration of the target as measured by the LDV is used to generate a target vibration spectrum. Target vibration spectra in response to a sound source were experimentally measured for 59 trials, 28 of which were of simulated landmine variants and the remaining trials were of urban clutter objects. Using an algorithm adapted from a methodology for mass spectral analysis, parameters of the target signatures are estimated; then individual target signatures are classified using a Support Vector Machine (SVM) with a training set composed of parameters from the remaining members of the total population. The best results obtained from this methodology had a 71% probability of detection and a 3% false alarm rate corresponding to 20 of 28 of the simulated landmine variants correctly identified and a single clutter object misidentified as a landmine variant. / by John Houston Doherty. / S.M.
37

Development of acoustic tissue mimicking materials for preclinical ultrasound imaging applications

Rabell Montiel, Adela January 2018 (has links)
Many applications of ultrasound test phantoms require that the acoustical properties of the phantom should closely match those of soft tissue. Numerous commercial test phantoms of this type are available for use with clinical ultrasound scanners, which use frequencies up to 20 MHz. However, scanners designed for imaging small animals in preclinical studies, typically operate at much higher frequencies. No commercially available test phantoms exist for use at frequencies above 20 MHz. The aim of this work was to develop a tissue-mimicking-material (TMM) that closely matches the acoustic properties of small animal tissues at high frequencies (HF). Such a material would, therefore, be suitable for ultrasound test phantoms for application with HF ultrasound scanners (20 MHz to 50 MHz). A three-step approach was adopted to address this lack of a suitable HF-TMM. Firstly, verify the acoustic characteristics of the existing IEC agar-based TMM. Secondly, establish the acoustic properties (speed of sound and attenuation coefficient) of small animal tissue at high frequencies. Thirdly, develop a TMM which exhibits, as closely as possible, these small animal tissue acoustic characteristics. A pulse-echo substitution method was used throughout to characterise the materials and the tissue samples. The speed of sound and attenuation coefficient of an IEC agar-based TMM were measured using two different techniques. Initially, a widely used method was tried, where samples are wrapped in film and placed in degassed, deionised water for assessment. The second technique was developed and validated for use in this work. In this method, TMM samples were uncovered (without film) and were both stored and assessed in a TMM preserving fluid. The second method provided up to four times more consistent results. The acoustical properties of the individual components of the IEC agar-based TMM were then measured in order to determine whether the overall attenuation coefficient of the agar TMM was a linear sum of the attenuation coefficients of its component parts. Within experimental uncertainties, this was found to be the case. This is a key observation from which the formulation of an agar TMM, matching the acoustic properties of small animal tissue, can be facilitated. The acoustical properties (speed of sound and attenuation coefficient) of mouse brain, liver, and kidney were measured using a preclinical ultrasound scanner.
38

Estudo sobre as potencialidades de comp?sitos ? base de gesso e fibras de coco seco para aplica??o na constru??o civil

Cunha, Paulo Waldemiro Soares 28 December 2012 (has links)
Made available in DSpace on 2014-12-17T14:07:19Z (GMT). No. of bitstreams: 1 PauloWSC_TESE.pdf: 3368472 bytes, checksum: 6f9f6907ea0f81a6a00e41d776e566c5 (MD5) Previous issue date: 2012-12-28 / The use of gypsum, one of the oldest building materials for the construction industry in the country has been experiencing a significant and steady growth, due to its low cost and some of its properties that confer comparative advantage over other binder materials. Its use comprises various applications including the coating of walls and the production of internal seals and linings. Moreover, the fibers are being increasingly incorporated into arrays fragile in an attempt to improve the properties of the composite by reducing the number of cracks, the opening of the same and its propagation velocity. Other properties, depending on the function of the component material or construction, among these thermal and acoustic performances, are of great importance in the context of buildings and could be improved, that is, having better performance with this embodiment. Conduct a comparative study of physico-mechanical, thermal and acoustic composite gypsum incorporating dry coconut fiber, in the form of blanket, constituted the main objective of this work. Improving the thermal and acoustic performances of precast gypsum, used for lining and internal vertical fences of buildings, was the purpose of development of these composites. To evaluate the effect of fiber content on the properties of the composites were used to manufacture the composite layer with different thicknesses. The composites were fabricated in the form of plates with dimensions of 500x500x24mm. To facilitate the comparative study of the properties were also made with material gypsum boards only. We then determined the physico-mechanical, thermal and acoustical plaster and composites. The results indicated that the composites were significant gains in relation to thermal performance and also acoustic, in certain frequency range, increasing the thickness of the blanket. Concerning other physical-mechanical properties, the results showed that although the compressive strength was lower than for the composite did not occur after a fracture catastrophic failure. The same trend was observed with regard to resistance to bending, since the composites have not suffered sudden rupture and still continued after the load supporting point of maximum load / A utiliza??o do gesso, um dos mais antigos materiais de constru??o, pela ind?stria da constru??o civil no Pa?s, vem experimentando um sens?vel e constante crescimento, em fun??o do seu baixo custo e de algumas de suas propriedades que lhe conferem vantagem comparativa em rela??o a outros materiais ligantes. Sua utiliza??o compreende diversas aplica??es entre as quais o revestimento de paredes e a confec??o de veda??es internas e de forros. Por outro lado, as fibras v?m sendo, cada vez mais, incorporadas em matrizes fr?geis, na tentativa de melhorar as propriedades do comp?sito, atrav?s da redu??o do n?mero de fissuras, da abertura das mesmas e da sua velocidade de propaga??o. Dependendo da fun??o do material ou do componente da constru??o, os desempenhos t?rmico e ac?stico, assumem grande import?ncia no contexto das edifica??es e tamb?m poderiam ser melhoradoscom a incorpora??o de fibras. Dentre as fibras vegetais, a fibra de coco seco apresenta um grande potencial, superior ?s vantagens comparativas das demais fibras, tal como uma maior resist?nciafrente ? alcalinidade caracter?stica das matrizes ciment?cias. Realizar um estudo comparativo das propriedades f?sico-mec?nicas, t?rmicas e ac?sticas de comp?sitos ? base de gesso com incorpora??o de fibra de coco seco, sob a forma de manta, constituiu-se no objetivo geral deste trabalho. Para tanto os materiais comp?sitos foram confeccionados em forma de placas, pain?is sandu?ches, com dimens?es de 500x500x24mm, sendo as camadas externas constitu?das pelogesso e a central (recheio) pela manta de fibra de coco seco. Para avaliar a influ?ncia do teor de fibras nas propriedades dos comp?sitos foram utilizadas na confec??o dos mesmos mantas com espessuras de 8 e 10 mm. Para possibilitar o estudo comparativo das propriedades foram tamb?m confeccionadas placas apenas com gesso. Foram ent?o determinadas as propriedades f?sico-mec?nicas, t?rmicas e ac?sticas do gesso e dos comp?sitos. Os resultados indicaram que para os comp?sitos ocorreram ganhos significativos em rela??o aos desempenhos t?rmico e tamb?m ac?stico, na faixa de frequ?ncia de 102,28 Hz a 1.150,00 Hz, ganhos esses crescentes com a espessura da manta. Em rela??o ?s demais propriedades f?sico-mec?nicas, os resultados mostraram que embora a resist?ncia ? compress?o tenha sido inferior para os comp?sitos, as fibras apenas evitaram um rompimento brusco, uma vez que as mesmas n?o atuam como refor?o para esse tipo de solicita??o. O mesmo comportamento ocorreu em rela??o ? resist?ncia ? flex?o, uma vez que os comp?sitos n?o sofreram ruptura brusca e ainda continuaram suportando carga depois do ponto de carga m?xima
39

Contribution à la certification des bâtiments durables au Sénégal : cas d'étude des matériaux de construction biosourcés à base de Typha / Contribution to the certification of sustainable buildings in Senegal : case study of biobased building materials made of Typha Australis

Niang, Ibrahim 25 June 2018 (has links)
Ces travaux de thèse s'inscrivent dans le cadre du projet PNEEB/Typha (Programme National d’Efficacité Energétique des Bâtiments) pour la valorisation d’un roseau invasif, le Typha Australis, comme isolant thermique pour améliorer l’efficacité énergétique des bâtiments au Sénégal. Un agromatériau à base de terre argileuse et de granulats de Typha Australis est élaboré afin d’évaluer l’influence de la morphologie et de la quantité de fibres sur le comportement du matériau. Pour cela, deux modes de production de granulats sont choisis : Une découpe longitudinale et une découpe transversale. Les propriétés physiques sont étudiées (taux de porosité, densité apparente et absolue, microstructure) et la tenue mécanique est déterminée. L'absorption acoustique est également évaluée, de même que les propriétés hygrothermiques et le comportement au feu. Les résultats montrent que la morphologie du granulat de Typha affecte le comportement en flexion, cisaillement et l’absorption acoustique. Son impact sur le comportement de compression est moins prononcé. Une portion plus importante de fibres de Typha réduit la résistance mécanique. En revanche, les performances hygrothermiques sont accrues en raison de la porosité de ces granulats. La fraction transversale de Typha permet d’améliorer la résistance thermique et d’accroitre les phénomènes de transfert de la vapeur d'eau. Cette étude a également permis de montrer que ces matériaux sont d'excellents régulateurs d'humidité. Enfin, les tests au feu révèlent qu’il s’agit de combustibles ininflammables en raison de la présence d'argile. L’influence de la morphologie des granulats n’est pas relevée. / This work is a part of PNEEB/Typha project (National Program for Energy Efficiency of Buildings) for the valorisation of an invasive reed, the Typha Australis, as a thermal insulator to improve the energy efficiency of buildings in Senegal. An agromaterial based on clay soil and Typha Australis is elaborated in order to evaluate the influence of the amount and fibres morphology on the material behaviour. For this, two production mode of granulates are chosen: longitudinal and transversal cut. Physical properties are studied (porosity, apparent, and absolute density, microstructure) and mechanical strength is determined. Sound absorption is also evaluated, as well as hygrothermal properties, and fire behaviour. Results show that granulate morphology affects the mechanical shear and flexure behaviour, as well as the acoustic absorption. Its impact on the compression strength is less pronounced. A greater portion of Typha fibers reduces the mechanical strength. However, hygrothermal performances are increased due to the aggregates porosity. Typha transverse fraction improves thermal resistance and increase water vapor transfer. This study also shows that these materials are excellent moisture regulators. Finally, fire tests reveal that it can be classified as combustible but non-flammable due to the clay presence. The fibres shape does not have a great influence.
40

Vývoj a výzkum environmentálně úsporných izolačních materiálů / Development of environmental friendly materials

Peterková, Jitka January 2013 (has links)
Increasing demand for new progressive construction materials requires development of modern environmentally friendly materials with excellent end-use properties and reasonable price. One of the main objectives of material research in building industry is using renewable resources of raw materials of industrial waste for development of new construction materials. Current trend of thermal insulation of building constructions results in development of environmentally friendly insulation materials based on renewable material resources from agriculture and stock farming, which could became alternative for current common use insulation materials in the future. The thesis describes research and development of insulation materials based on natural fibres of agricultural origin; in particular fibres of hemp, flax and jute. Hydrothermal behavior of developed materials is studied including computational simulation of behavior of researched materials after building in the construction.

Page generated in 0.1533 seconds