Spelling suggestions: "subject:"adc"" "subject:"adi""
51 |
The Atkin operator on spaces of overconvergent modular forms and arithmetic applicationsVonk, Jan Bert January 2015 (has links)
We investigate the action of the Atkin operator on spaces of overconvergent p-adic modular forms. Our contributions are both computational and geometric. We present several algorithms to compute the spectrum of the Atkin operator, as well as its p-adic variation as a function of the weight. As an application, we explicitly construct Heegner-type points on elliptic curves. We then make a geometric study of the Atkin operator, and prove a potential semi-stability theorem for correspondences. We explicitly determine the stable models of various Hecke operators on quaternionic Shimura curves, and make a purely geometric study of canonical subgroups.
|
52 |
Comptage de points de courbes hyperelliptiques en grande caractéristique : algorithmes et complexité / Counting points on hyperelliptic curves in large characteristic : algorithms and complexityAbelard, Simon 07 September 2018 (has links)
Le comptage de points de courbes algébriques est une primitive essentielle en théorie des nombres, avec des applications en cryptographie, en géométrie arithmétique et pour les codes correcteurs. Dans cette thèse, nous nous intéressons plus particulièrement au cas de courbes hyperelliptiques définies sur des corps finis de grande caractéristique $p$. Dans ce cas de figure, les algorithmes dérivés de ceux de Schoof et Pila sont actuellement les plus adaptés car leur complexité est polynomiale en $\log p$. En revanche, la dépendance en le genre $g$ de la courbe est exponentielle et se fait cruellement sentir même pour $g=3$. Nos contributions consistent principalement à obtenir de nouvelles bornes pour la dépendance en $g$ de l'exposant de $\log p$. Dans le cas de courbes hyperelliptiques, de précédents travaux donnaient une borne quasi-quadratique que nous avons pu ramener à linéaire, et même constante dans le cas très particuliers de familles de courbes dites à multiplication réelle (RM). En genre $3$, nous avons proposé un algorithme inspiré de ceux de Schoof et de Gaudry-Harley-Schost dont la complexité, en général prohibitive, devient très raisonnable dans le cas de courbes RM. Nous avons ainsi pu réaliser des expériences pratiques et compter les points d'une courbe hyperelliptique de genre $3$ pour un $p$ de 64 bits / Counting points on algebraic curves has drawn a lot of attention due to its many applications from number theory and arithmetic geometry to cryptography and coding theory. In this thesis, we focus on counting points on hyperelliptic curves over finite fields of large characteristic $p$. In this setting, the most suitable algorithms are currently those of Schoof and Pila, because their complexities are polynomial in $\log q$. However, their dependency in the genus $g$ of the curve is exponential, and this is already painful even in genus 3. Our contributions mainly consist of establishing new complexity bounds with a smaller dependency in $g$ of the exponent of $\log p$. For hyperelliptic curves, previous work showed that it was quasi-quadratic, and we reduced it to a linear dependency. Restricting to more special families of hyperelliptic curves with explicit real multiplication (RM), we obtained a constant bound for this exponent.In genus 3, we proposed an algorithm based on those of Schoof and Gaudry-Harley-Schost whose complexity is prohibitive in general, but turns out to be reasonable when the input curves have explicit RM. In this more favorable case, we were able to count points on a hyperelliptic curve defined over a 64-bit prime field
|
53 |
Grande image de Galois pour familles p-adiques de formes automorphes de pente positive / Big Galois image for p-adic families of positive slope automorphic formsConti, Andrea 13 July 2016 (has links)
Soit g = 1 ou 2 et p > 3 un nombre premier. Pour le groupe symplectique GSp2g, les systèmes de valeurs propres de Hecke apparaissant dans les espaces de formes automorphes classiques, d’un niveau modéré fixé et de poids variable, sont interpolés p-adiquement par un espace rigide analytique, la vari´et´e de Hecke pour GSp2g. Un sous-domaine suffisamment petit de cette variété peut être décrit comme l’espace rigide analytique associé `a une algèbre profinie T. Une composante irréductible de T est d´efinie par un anneau profini I et un morphisme θ : T → I. Dans le cas résiduellement irréductible on peut associer `a θ une représentation ρθ : Gal(Q/Q) → GSp2g(I). On étudie l’image de ρθ quand θ décrit une composante de pente positive de T. Pour g = 1 il s’agit d’un travail en commun avec A. Lovita et J. Tilouine. On suppose que g = 1 o`u que g = 2 et θ est résiduellement de type cube sym2trique. On montre que Im ρθ est “grande” et que sa taille est li´ee aux “congruences fortuites” de θ avec les transferts de familles pour groupes de rang plus petit. Plus précisement, on agrandit un sous-anneau I0de I[1/p] en un anneau B et on définit une sous-algèbre de Lie G de gsp2g(B) associée `a Im ρθ. On prouve qu’il existe un idéal non-nul l de I0 tel que l · sp2g(B) ⊂ G. Pour g = 1 les facteurs premiers de l correspondent aux points CM de la famille θ. Pour g = 2 les facteurs premiers de l correspondent `a des congruences fortuites de θ avec des sous-familles de dimension 0 ou 1, obtenues par des transferts de type cube sym´etrique de points ou familles de la courbe de Hecke pour GL2. / Let g = 1 or 2 and p > 3 be a prime. For the symplectic group GSp2g the Hecke eigensystems appearing in the spaces of classical automorphic forms, of a fixed tame level and varying weight, are p-adically interpolated by a rigid analytic space, the GSp2g-eigenvariety. A sufficiently small subdomain of the eigenvariety can be described as the rigid analytic space associated with a profinite algebra T. An irreducible component of T is defined by a profinite ring I and a morphism θ : T → I. In the residually irreducible case we can attach to θ a representation ρθ : Gal(Q/Q) → GSp2g(I). We study the image of ρθ when θ describes a positive slope component of T. In the case g = 1 this is a joint work with A. Iovita and J. Tilouine. Suppose either that g = 1 or that g = 2 and θ is residually of symmetric cube type. We prove that Im ρθ is “big” and that its size is related to the “accidental congruences” of θ with the subfamilies that are obtained as lifts of families for groups of smaller rank. More precisely, we enlarge a subring I0 of I[1/p] to a ring B and we define a Lie subalgebra G of gsp2g(B) associated with Im ρθ. We prove that there exists a non-zero ideal l of I0 such that l · sp2g(B) ⊂ G. For g = 1 the prime factors of l correspond to the CM points of the family θ. Such points do not define congruences between θ and a CM family, so we call them accidental congruence points. For g = 2 the prime factors of l correspond to accidental congruences of θ with subfamilies of dimension 0 or 1 that are symmetric cube lifts of points or families of the GL2-eigencurve.
|
54 |
Propriétés arithmétiques des applications miroir / Arithmetic properties of mirror mapsDelaygue, Eric 06 September 2011 (has links)
Nous donnons une condition nécessaire et suffisante pour que les coefficients de Taylor à l'origine de séries en plusieurs variables $q_i({mathbf z})=z_iexp(G_i({mathbf z})/F({mathbf z}))$ soient entiers, avec ${mathbf z}=(z_1,dots,z_d)$ et où $F({mathbf z})$ et $G_i({mathbf z})+log(z_i)F({mathbf z})$, $i=1,dots,d$, sont des solutions particulières de certains $A$-systèmes d'équations différentielles linéaires. Ce critère est basé sur les propriétés analytiques de l'application de Landau (classiquement associée aux suites de quotients de factorielles de formes linéaires). Pour démontrer ce critère, nous généralisons entre autres une version en plusieurs variables d'un théorème de Dwork concernant les congruences formelles entre séries formelles, démontrée par Krattenthaler et Rivoal dans og Multivariate $p$-adic formal congruences and integrality of Taylor coefficients of mirror maps fg [arXiv:0804.3049v3, math.NT]. Ce critère en plusieurs variables implique l'intégralité des coefficients de Taylor de nouvelles applications miroir d'une seule variable dans og Tables of Calabi--Yau equations fg [arXiv:math/0507430v2, math.AG] de Almkvist, van Enckevort, van Straten et Zudilin. Dans le cas particulier d'une variable, nous affinons notre critère et démontrons l'intégralité des coefficients de Taylor de racines d'applications miroir. Cela nous permet de démontrer une conjecture de Zhou énoncée dans og Integrality properties of variations of Mahler measures fg [arXiv:1006.2428v1 math.AG]. / We give a necessary and sufficient condition for the integrality of the Taylor coefficients at the origin of formal power series $q_i({mathbf z})=z_iexp(G_i({mathbf z})/F({mathbf z}))$, with ${mathbf z}=(z_1,dots,z_d)$ and where $F({mathbf z})$ and $G_i({mathbf z})+log(z_i)F({mathbf z})$, $i=1,dots,d$ are particular solutions of some $A$-systems of differential equations. This criterion is based on the analytical properties of Landau's function (which is classically associated to the sequences of factorial ratios). One of the techniques used to prove this criterion is a generalization of a version of a theorem of Dwork on the formal congruences between formal series, proved by Krattenthaler and Rivoal in og Multivariate $p$-adic formal congruences and integrality of Taylor coefficients of mirror maps fg [arXiv:0804.3049v3, math.NT]. This criterion involves the integrality of the Taylor coefficients of new univariate mirror maps listed in og Tables of Calabi--Yau equations fg [arXiv:math/0507430v2, math.AG] by Almkvist, van Enckevort, van Straten and Zudilin. In the particular case of one variable, we refine our criterion and demonstrate the integrality of the Taylor coefficients of roots of mirror maps. This allows us to prove a conjecture stated by Zhou in og Integrality properties of variations of Mahler measures fg [arXiv:1006.2428v1 math.AG]. STAR Date de soutenance : 6 septembre 2011 Thèse sur travaux: non
|
55 |
Spectre d'équations différentielles p-adiques / Spectrum of p-adic differential equationsAzzouz, Tinhinane Amina 11 June 2018 (has links)
Les équations différentielles constituent un important outil pour l'étude des variétés algébriques et analytiques, sur les nombres complexes et $p$-adiques. Dans le cas $p$-adique, elles présentent des phénomènes qui n'apparaissent pas dans le cas complexe. En effet, le rayon de convergence des solutions d'une équation différentielle linéaire peut être fini, et cela même en l'absence des pôles.La connaissance de ce rayon permet d’obtenir de nombreuses informations intéressantes sur l’équation. Plus précisément, depuis les travaux de F. Baldassarri, on sait associer un rayon de convergence à tout point d’une courbe p-adique au sens de Berkovich munie d’une connexion. Des travaux récents de F. Baldassarri, K. Kedlaya, J. Poineauet A. Pulita ont révélé que ce rayon se comporte de manière très contrainte. Afin de pousser l'étude, on introduit un objet géométrique qui raffine ce rayon, le spectre au sens de Berekovich d'une équation différentielle.Dans ce mémoire de thèse, nous définissons le spectre d'un module différentiel et donnons ses premières propriétés. Nous calculons aussi les spectres de quelques classes de modules différentiels: modules différentiels d'une équations différentielles à coefficients constants, modules différentiels singuliers réguliers et enfin modules différentiels sur un corps des séries de Laurent. / Differential equations constitute an important tool for theinvestigation of algebraic and analytic varieties, over thecomplex and the $p$-adic numbers. In the $p$-adic setting, theypresent phenomena that do not appear in the complex case. Indeed, theradius of convergence of the solutions of a linear differential equation,even without presence of poles.The knowledge of that radius permits to obtain several interestinginformations about the equation. More precisely, since the works ofF. Baldassarri, we know how to associate a radius of convergece to allpoint of a p-adic curve in the sense of Berkovich endowed with aconnexion. Recent works of F. Baldassarri, K.S. Kedlaya, J. Poineau, etA. Pulita have proved that this radius behave in a very controlledway. The radius of convergence can be refined using subsidiary radii,that are known to have similar properties. In order to push forward the study, we introduce a geometric object that refine this radius, thespectrum in the sense of Berkovich of a differential equation.In the present thesis, we define the spectrum of a differentialequation and provide its first properties. We also compute the spectraof some classes of differential modules: differential modules ofa differential équation with constant coefficients, singular regulardifferential modules and at last differential modules over the field ofLaurent power series.
|
56 |
Solubilidade de sistemas de equações aditivas sobre o corpo dos números p-ádicos com uma restrição sobre p / Solubility of systems of additive equations in p-adic fields with a restriction about pVeras, Daiane Soares 21 March 2013 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-18T20:04:19Z
No. of bitstreams: 2
DISSERT.CORRETA.DAI.pdf: 1217710 bytes, checksum: dd809f01ecd6c0000cfa17badb034cf1 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Há problemas nos campos de palavras chaves e citação.
11º. Palavras chaves só use a primeira letra maiúscula de cada palavra chave, e caso não tenha unitermo no resumo use as palavras chaves da ficha catalográfica, mas como unitermo, ou seja, palavras isoladas. Coloque, também, o correspondente das palavras chaves em inglês, a menos que não tenha na dissertação ou tese
Ex.: Controle de qualidade
Atividade antimicrobiana
Qualitycontrol
Antimicrobial activity
A citação tem que ser adequada a NBR 6023. Ex.:
ALCÂNTARA, Guizelle Aparecida de. Caracterização farmacognostica e atividade antimicrobiana da folha e casca do caule da myrciarostratadc.(myrtaceae). 2012. 41 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2012.
on 2014-09-19T13:15:04Z (GMT) / Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-22T18:09:15Z
No. of bitstreams: 2
DISSERT.CORRETA.DAI.pdf: 1217710 bytes, checksum: dd809f01ecd6c0000cfa17badb034cf1 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-22T19:11:21Z (GMT) No. of bitstreams: 2
DISSERT.CORRETA.DAI.pdf: 1217710 bytes, checksum: dd809f01ecd6c0000cfa17badb034cf1 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-22T19:11:21Z (GMT). No. of bitstreams: 2
DISSERT.CORRETA.DAI.pdf: 1217710 bytes, checksum: dd809f01ecd6c0000cfa17badb034cf1 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-03-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based on articles by Atkinson, and Cook Brüdern [2] and I. D. Meir [15]
treating solubility p-adic nontrivial of the systems for additive equations of degree k
in n variables. Using techniques of the exponential sums we will see that to ensure the
solubility nontrivial of such systems when p > k2r+2, then 2rk + 1 variables will be
sufficient. When p > r2k2+2/(c−2) e r 6= 1 then n > crk variables are sufficient. In the
case where r = 1 we assure solubility nontrivial p-adic for every p > k2+2/(c−1). / Este trabalho é baseado nos artigos de Atkinson, Brüdern e Cook [2] e I. D. Meir [15]
que tratam de solubilidade p-ádica não trivial para sistemas de equações aditivas de grau
k em n variáveis. Usando técnicas de somas exponenciais veremos que para garantir a
solubilidade não trivial de tais sistemas quando p > k2r+2, então 2rk+1 variáveis serão
suficientes. Quando p > r2k2+2/(c−2) e r 6= 1 então n > crk variáveis são suficientes. No
caso em que r = 1 garantimos a solublidade não trivial p-ádica para todo p > k2+2/(c−1).
|
57 |
Some Diophantine ProblemsJanuary 2019 (has links)
abstract: Diophantine arithmetic is one of the oldest branches of mathematics, the search
for integer or rational solutions of algebraic equations. Pythagorean triangles are
an early instance. Diophantus of Alexandria wrote the first related treatise in the
fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.
The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.
The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2019
|
58 |
Smallest poles of Igusa's and topological zeta functions and solutions of polynomial congruencesSegers, Dirk 30 April 2004 (has links) (PDF)
Igusa's p-adic zeta function is associated to a polynomial f in several variables over the integers and to a prime p. It is a meromorphic function which encodes for every i the number of solutions M_i of f=0 modulo p^i. The intensive study of Igusa's p-adic zeta function by using an embedded resolution of f led to the introduction of the topological zeta function. This geometric invariant of the zero locus of a polynomial f in several variables over the complex numbers was introduced in the early nineties by Denef and Loeser. It is a rational function which they obtained as a limit of Igusa's p-adic zeta functions and which is defined by using an embedded resolution.<br />I have studied the smallest poles of the topological zeta function and the smallest real parts of the poles of Igusa's p-adic zeta function. For n=2 and n=3, I obtained results by using an embedded resolution of singularities. I discovered that the smallest real part of a pole of Igusa's p-adic zeta function is related with the divisibility of the M_i by powers of p. I obtained a general theorem on the divisibility of the M_i by powers of p, which I used to obtain the optimal lower bound for the real part of a pole of Igusa's p-adic zeta function in arbitrary dimension n. I obtained this lower bound also for the topological zeta function by taking the limit.
|
59 |
The Role of Autotaxin in the Regulation of Lysophosphatidylcholine-Induced Cell MigrationGaetano, Cristoforo Giuseppe 06 1900 (has links)
Increased expression of autotaxin has been shown to promote metastasis formation and cancer proliferation. These actions could be related to the catalytic activity of autotaxin which converts lysophosphatidylcholine into lysophosphatidate extracellularly or non-catalytic functions of autotaxin may be responsible. Also both LPC and LPA have been reported to stimulate migration through their respective receptors. This work investigates the role of autotaxin in controlling the motility of two cancer cell lines. With the use of autotaxin inhibitors we were able to block LPC-induced migration. Knocking-down autotaxin secretion also blocked stimulation of migration by LPC. Autotaxin
inhibitors abolished any migratory effects from media collected from autotaxin secreting cells. We determined that LPC alone is unable to stimulate migration. Also we did not observe non-catalytic effects of autotaxin on migration. This thesis provides strong evidence that the inhibition of autotaxin production or activity would provide a beneficial therapy in the prevention of tumour growth or metastasis in patients with autotaxin expressing tumours.
|
60 |
Roots of Polynomials: Developing p-adic Numbers and Drawing Newton PolygonsOgburn, Julia J 15 March 2013 (has links)
Newton polygons are constructions over the p-adic numbers used to find information about the roots of a polynomial or power series. In this the- sis, we will first investigate the construction of the field Qp on the p-adic numbers. Then, we will use theorems such as Eisenstein’s Irreducibility Criterion, Newton’s Method, Hensel’s Lemma, and Strassman’s Theorem to build and justify Newton polygons.
|
Page generated in 0.0803 seconds