Spelling suggestions: "subject:"adc"" "subject:"adi""
81 |
Relative Fontaine-Laffaille Theory over Power Series RingsChristian Lawrence Hokaj (18368760) 16 April 2024 (has links)
<p dir="ltr">Let k be a perfect field of characteristic p > 2. We extend the equivalence of categories between Fontaine-Laffaille modules and Z_p lattices inside crystalline representations with Hodge-Tate weights at most p-2 of Fontaine to the situation where the base ring is the power series ring in d variables over the ring of Witt vectors of k. </p>
|
82 |
Geometric and analytic methods for quadratic ChabautyHashimoto, Sachi 28 October 2022 (has links)
Let X be an Atkin-Lehner quotient of the modular curve X_0(N) whose Jacobian J_f is a simple quotient of J_0(N)^{new} over Q. We give analytic methods for determining the rational points of X using quadratic Chabauty by explicitly computing two p-adic Gross--Zagier formulas for the newform f of level N and weight 2 associated with J_f when f has analytic rank 1.
Combining results of Gross-Zagier and Waldspurger, one knows that for certain imaginary quadratic fields K, there exists a Heegner divisor in J_0(N)(K) whose image is finite index in J_f(Q) under the action of Hecke. We give an algorithm to compute the special value of the anticyclotomic p-adic L-function of f constructed by Bertolini, Darmon, and Prasanna, assuming some hypotheses on the prime p and on K. This value is proportional to the logarithm of the Heegner divisor on J_f with respect to the differential form f dq/q. We also compute the p-adic height of the Heegner divisor on J_f using a p-adic Gross-Zagier formula of Perrin-Riou.
Additionally, we give algorithms for the geometric quadratic Chabauty method of Edixhoven and Lido. Our algorithms describe how to translate their algebro-geometric method into calculations involving Coleman-Gross heights, logarithms, and divisor arithmetic. We achieve this by leveraging a map from the Poincaré biextension to the trivial biextension.
|
83 |
Quantum mechanics on profinite groups and partial orderVourdas, Apostolos January 2013 (has links)
no / Inverse limits and profinite groups are used in a quantum mechanical context. Two cases are considered: a quantum system with positions in the profinite group Z(p) and momenta in the group Q(p)/Z(p), and a quantum system with positions in the profinite group (Z) over cap and momenta in the group Q/Z. The corresponding Schwatz-Bruhat spaces of wavefunctions and the Heisenberg-Weyl groups are discussed. The sets of subsystems of these systems are studied from the point of view of partial order theory. It is shown that they are directed-complete partial orders. It is also shown that they are topological spaces with T-0-topologies, and this is used to define continuity of various physical quantities. The physical meaning of profinite groups, non-Archimedean metrics, partial orders and T-0-topologies, in a quantum mechanical context, is discussed.
|
84 |
Extensions entre séries principales p-adiques et modulo p d'un groupe réductif p-adique déployé / Extensions between p-adic and mod p principal series of a split p-adic reductive groupHauseux, Julien 11 December 2014 (has links)
Cette thèse est une contribution à l'étude des représentations p-adiques (c'est-à-dire continues unitaires sur des espaces de Banach p-adiques) et modulo p (c'est-à-dire lisses sur un corps fini de caractéristique p) d'un groupe réductif p-adique déployé G.Nous déterminons les extensions entre séries principales p-adiques et modulo p de G Pour cela, nous calculons le delta-foncteur H•OrdB des parties ordinaires dérivées d'Emerton relatif à un sous-groupe de Borel sur une série principale en utilisant une filtration de Bruhat.Nous déterminons également les extensions d'une série principale par une représentation ordinaire (c'est-à-dire obtenue par induction parabolique à partir d'une représentation spéciale du Levi tordue par un caractère), ainsi que les extensions de Yoneda de longueur supérieure entre séries principales modulo p sous une conjecture d'Emerton vraie pour GL2.Nous montrons de plus qu'il n'existe pas de « chaîne » de trois séries principales p-adiques ou modulo p distinctes de G. Pour cela, nous calculons partiellement le delta-foncteur H•OrdP relatif à un sous-groupe parabolique quelconque sur une série principale. En exploitant ce résultat, nous prouvons une conjecture de Breuil et Herzig sur l'unicité de certaines représentations p-adiques de G dont les constituants sont des séries principales, ainsi que son analogue modulo p.Enfin, nous énonçons une nouvelle conjecture sur les extensions entre représentations modulo p irréductibles de G obtenues par induction parabolique à partir d'une représentations supersingulière du Levi. Nous prouvons cette conjecture pour les extensions par une série principale. / This thesis is a contribution to the study of p-adic (i.e. unitary continuous on p-adic Banach spaces) and mod p (i.e. smooth over a finite field of characteristic p) representations of a split p-adic reductive group G.We determine the extensions between p-adic and mod p principal series of G. In order to do so, we compute Emerton's delta-functor H•OrdB of derived ordinary parts with respect to a Borel subgroup on a principal series using a Bruhat filtration.We also determine the extensions of a principal series by an ordinary representation (i.e. parabolically induced from a special representation of the Levi twisted by a character), as well as the Yoneda extensions of higher length between mod p principal series under a conjecture of Emerton true for GL2.Moreover, we show that there exists no “chain” of three distinct p-adic or mod p principal series of G. In order to do so, we partially compute the delta-functor H•OrdP with respect to any parabolic subgroup on a principal series. Exploiting this result, we prove a conjecture of Breuil and Herzig on the uniqueness of certain p-adic representations of G whose constituents are principal series, as well as its mod p analogue.Finally, we formulate a new conjecture on the extensions between irreducible mod p representations of G parabolically induced from a supersingular representation of the Levi. We prove this conjecture for extensions by a principal series.
|
85 |
Extensions de Lie p-adiques et (Phi, Gamma)-modules / p-adic Lie extensions and (Phi, Gamma)-modulesPoyeton, Léo 11 April 2019 (has links)
Dans cette thèse, on s'intéresse à des aspects théoriques de la théorie des représentations p-adiques du groupe de Galois absolu de K, où K est un corps p-adique, réunis autour de deux axes principaux : d'une part, tenter de caractériser les extensions de Lie p-adiques pour lesquelles on peut définir une théorie des (φ,Γ)-modules, et d'autre part étudier la théorie des (φ,τ)-modules pour obtenir des applications aux représentations p-adiques, et en particulier pour les représentations semi-stables. Cette thèse est constituée de cinq chapitres. Le premier présente les résultats sur les représentations p-adiques, les (φ,Γ)-modules et la théorie de Hodge p-adique nécessaires aux autres chapitres. Dans le deuxième chapitre, on s'intéresse à la question des extensions de Lie p-adiques pour lesquelles on peut définir une théorie des (φ,Γ)-modules, et on montre que, sous l'hypothèse supplémentaire de demander à ce que le Frobenius soit de hauteur finie, ces extensions sont des extensions de Lubin-Tate à extension finie près. Le troisième chapitre expose la théorie des vecteurs localement analytiques nécessaire aux quatrième et cinquième chapitres. Le quatrième chapitre utilise la théorie des vecteurs localement analytiques pour montrer la surconvergence des (φ,τ)-modules. Dans le cinquième chapitre, on utilise les résultats du quatrième chapitre pour caractériser les représentations semi-stables et potentiellement semi-stables du groupe de Galois absolu de K en fonction de leur (φ,τ)-module, et on montre comment retrouver les invariants Dcris et Dst d'une représentation à partir de leur (φ,τ)-module. / In this thesis, we study some theorical aspects of the theory of p-adic representations of the absolute Galois group of K, where K is a p-adic field. First, we try to give a characterization of the p-adic Lie extensions of K for which one can build a theory of (φ,Γ)-modules. Then, we study the theory of (φ,τ)-modules. This thesis consists of five chapters. The first one introduces the results on p-adic representations, (φ,Γ)-modules and p-adic Hodge theory which are needed in the other chapters. In the second chapter, we try to understand which p-adic Lie extensions of K can be used in order to build a theory of (φ,Γ)-modules and we prove that, under the additional assumption that the Frobenius is of finite height, such extensions are, up to a finite extension, Lubin-Tate extensions. The third chapter lays out the theory of locally analytic vectors needed for the fourth and fifth chapters. The fourth chapter uses the theory of locally analytic vectors to prove the overconvergence of (φ,τ)-modules. In the fifth chapter, we use results obtained in the fourth chapter in order to characterize semi-stable and potentially semi-stable representations of the absolute Galois group of K from their (φ,τ)-modules, and we show how to recover the invariants Dcris and Dst attached to a representation V from its (φ,τ)-module.
|
86 |
Anneaux de Fontaine et géométrie : deux exemples d'interaction / Fontaine's rings and geometry : two examples of interactionLe Bras, Arthur-César 29 June 2017 (has links)
Cette thèse se compose de deux chapitres distincts. Les problématiques abordées y sont différentes, mais ils ont en commun de relier des objets de nature géométrique à des objets issus de la théorie de Hodge p-adique. Les résultats du premier chapitre s’inscrivent dans le cadre du programme de Langlands p-adique. Nous décrivons le complexe de de Rham des revêtements du demi-plan de Drinfeld pour GL_2(Q_p). Cette description, conjecturée par Breuil et Strauch, fournit une réalisation géométrique de la correspondance de Langlands locale $p$-adique pour certaines représentations de de Rham de dimension 2 du groupe de Galois absolu de Q_p. Le second chapitre est consacré à l’étude de la catégorie des espaces de Banach-Colmez. Notre résultat principal est une description de cette catégorie abélienne en termes de la catégorie des faisceaux cohérents sur la courbe de Fargues-Fontaine. Au passage, nous démontrons quelques résultats d’intérêt indépendant sur la cohomologie pro-étale et la cohomologie syntomique des variétés rigides. / This PhD thesis contains two chapters. The topics of these two chapters are quite different, but they have in common to draw connections between geometric objects and objects which come from p-adic Hodge theory. The framework of the first chapter is the p-adic Langlands program. We describe the de Rham complex of the étale overings of Drinfeld's p-adic upper half-plane for GL_2(Q_p). Conjectured by Breuil and Strauch, this description gives a geometric realization of the p-adic local Langlands correspondence for certain two-dimensional de Rham representations of the absolute Galois group of Q_p. The second chapter is devoted to the study of the category of Banach-Colmez spaces. Our main result is a precise description of this abelian category in terms of the category of coherent sheaves on the Fargues-Fontaine. Along the way we also prove a few results of independent interest about the pro-étale cohomology and syntomic cohomology of rigid spaces.
|
87 |
Conjectura de Artin: um estudo sobre pares de formas aditivas / Artin´s conjecture: a study of pairs of additive formsCamacho, Adriana Marcela Fonce 22 August 2014 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-03-10T17:35:32Z
No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-14T14:08:40Z (GMT) No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-03-14T14:08:40Z (GMT). No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-08-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based mainly on the Brunder and Godinho article [2] which shows proof of
the conjecture of Artin methods using p-adic, although the conjecture is stated on the real
numbers which makes the proof is show an equivalence on the field of the number p-adic
method with the help of colored variables ya contraction of variables so as to prove the
statement, taking the first level and ensuring a nontrivial solution in the following levels. / Este trabalho é baseado principalmente no artigo de Brunder e Godinho [2] o qual mostra
a prova da conjetura de Artin usando métodos p-ádicos, ainda que a conjetura se afirma
sobre o números reais o que faz a prova é mostrar uma equivalência sobre o corpo dos
número p-ádicos com ajuda do método de variáveis coloridas e a contração de variáveis
para assim provar a afirmação, tomando o primeiro nível e assim garantindo uma solução
não trivial nos níveis seguintes.
|
88 |
Conjectura de Artin para pares de formas aditivas de grau 6 / Artin’s conjecture for pairs of additive sextic formsCelis Cerón, M.A 25 April 2014 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-05T10:05:56Z
No. of bitstreams: 2
Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T10:59:19Z (GMT) No. of bitstreams: 2
Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-02-05T10:59:19Z (GMT). No. of bitstreams: 2
Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-04-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Celis Cerón, Mónica Andrea. Artin’s conjecture for pairs of additive sextic forms. Goiânia, 2014. 62p. MSc. Dissertation. Instituto de Matemática e Estatística, Universidade Federal de Goiás.
Consider the system of equations
a1xk1+ a2xk2+ + asxks= 0;
b1xk1+ b2xk2+ + bsxks= 0;
where a1; a2; ; as; b1; b2; ; bs 2 Z
A special case of Artin’s conjecture states that the above system must have nontrivial
solutions in every p-adic field, Qp, provided only that s 2k2+ 1. In this text we show
that the conjecture is true when k = 6. / Celis Cerón, Mónica Andrea. Conjectura de Artin para pares de formas aditivas de grau 6. Goiânia, 2014. 62p. Dissertação de Mestrado. Instituto de Matemática e Estatística, Universidade Federal de Goiás.
Consideremos o sistema de equações
a1xk1+ a2xk2+...+ asxks= 0;
b1xk1+ b2xk2+ + bsxks= 0;
onde, a 1; a 2; ; as; b1; b2; ; bs 2 Z.
Um caso especial da conjectura de Artin nos diz que o sistema anterior tem solução não trivial em todo corpo p-ádico, Qp, sempre que s 2k2+ 1. Neste trabalho mostraremos que a conjectura é válida quando k = 6.
|
89 |
Condições de solubilidade p-ádica de pares de formas diagonais e alguns casos especiais / Conditions of p-adic solubility of pars of diagonal forms and some special casesFerreira, Alaídes Inácio Stival January 2009 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-06T13:53:45Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5) / Made available in DSpace on 2014-08-06T13:53:45Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5)
Previous issue date: 2009 / This text is above solvability in systems of two forms additive over p-adics fields: with
of degree k and variables n > 4k at lesat p > 3k4
; with of degree an k odd integer at least n > 6k+1 variables; and with of degree 5 and p > 101 for n ≥ 31 variables, and for all p
with n ≥ 36 variables, with the possible exceptions of p = 5 and p = 11. / Este texto é sobre solubilidade no corpo dos p-ádicos de sistemas de duas formas aditivas:
com grau k e variáveis n > 4k apartir de p > 3k4
; com grau k ímpar apartir de n > 6k +1
variáveis; e de grau 5 com p > 101 para n ≥ 31 variáveis, e para todo p com n ≥ 36
variáveis, com exceções de p = 5 e p = 11.
|
90 |
Polynomial root separation and applicationsPejkovic, Tomislav 20 January 2012 (has links) (PDF)
We study bounds on the distances of roots of integer polynomials and applications of such results. The separation of complex roots for reducible monic integer polynomials of fourth degree is thoroughly explained. Lemmas on roots of polynomials in the p-adic setting are proved. Explicit families of polynomials of general degree as well as families in some classes of quadratic and cubic polynomials with very good separation of roots in the same setting are exhibited. The second part of the thesis is concerned with results on p-adic versions of Mahler's and Koksma's functions wn and w*n and the related classifications of transcendental numbers in Cp. The main result is a construction of numbers such that the two functions wn and w*n differ on them for every n and later on expanding the interval of possible values for wn-w*n. The inequalities linking values of Koksma's functions for algebraically dependent numbers are proved.
|
Page generated in 0.0798 seconds