• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 22
  • 9
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 127
  • 48
  • 36
  • 25
  • 22
  • 21
  • 20
  • 20
  • 19
  • 18
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Números p-ádicos e formas quadráticas / P-adic numbers and quadratic forms

Santana, Luiz Fernando Rodrigues 10 October 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-10-22T13:10:57Z No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-22T13:16:35Z (GMT) No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-10-22T13:16:35Z (GMT). No. of bitstreams: 2 Disertação - Luiz Fernando Rodrigues Santana - 2018.pdf: 1262248 bytes, checksum: 28c77ae261289cc58c11db648cd4572b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-10-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This text presents the properties and definitions of p-adic numbers linked to the definition of quadratic forms. Hasse's theorem: “Every quadratic form, with 5 variables or more, has non-trivial p-adic zeros” exemplifies the Local- Global Principle, which in turn ensures that if a polynomial equation has non-trivial rational zeros if, and only if, It has non-trivial zeros over R and about Qp, p prime. / Este texto apresenta as propriedades e as definições de números p-ádicos atreladas à definição de formas quadráticas. O teorema de Hasse: “Toda forma quadrática, com 5 variáveis ou mais, possui zeros p-ádicos não triviais” exemplifia o Princípio Local Global, que por sua vez garante que se uma equação polinomial possui zeros racionais não triviais se, e somente se, possui zeros não triviais sobre R e sobre Qp, p primo.
112

Quantification de groupes p-adiques et applications aux algèbres d'opérateurs. / Quantization of p-adic groups and applications to operator algebras.

Jondreville, David 26 June 2017 (has links)
Cette thèse est consacrée à l'étude des déformations des C*-algèbres munies d'une action de groupe, du point de vue de la quantification équivariante non-formelle, dans le cas non-archimédien. Nous construisons une théorie de déformation des C*-algèbres munies d'une action d'un espace vectoriel de dimension finie sur un corps local non-archimédien de caractéristique différente de 2 ainsi que pour des quotients du groupe affine d'un corps local dont le corps résiduel est de cardinal impair. Par ailleurs, nous construisons des familles de 2-cocycles unitaires afin de déformer des groupes quantiques localement compacts agissant sur ces C*-algèbres déformées. / This thesis is devoted to the study of deformation of C*-algebras endowed with a group action, from the perspective of non-formal equivariant quantization, in the non-Archimedean setting. We construct a deformation theory of C*-algebras endowed with an action of a finite dimensional vector space over a non-Archimedean local field of characteristic different from 2 and for quotients of the affine group of a local field whose residue field has cardinality not divisible by 2. Moreover, we construct families of dual unitary 2-cocycles in order to deform locally compact quantum groups acting on these deformed C*-algebras.
113

Bruhatovy-Titsovy budovy / Bruhat-Tits buildings

Lachman, Dominik January 2017 (has links)
Bruhat-Tits buildings are a fundamental concept in the study of linear algebraic groups over general fields. The general goal of this thesis is to introduce buildings in the basic case of SLd(Qp) and to explicitly describe some of their geometrical and combinatorial properties - building are abstract simplicial complexes. After the general construction (Chapter 1) we focus in detail to the case of SL2(Qp). We work with simplices using certain matrix representatives. We explicitly describe the building and give a formula for graph distance. In Chapter 3 we consider the general case SLd(Qp), d ≥ 2. There we introduce a new concept of distance formulas. In Chapter 4 we prove some theorems which are satisfied by buildings in general. Chapter 5 studies the problem of determining so-called gallery distance of two simplices. In the last Chapter 6 we generalize the distance formulas to the case of three vertices. 1
114

HPLC stanovení gallové kyseliny jako možného produktu enzymatické reakce šikimové kyseliny, NADP+ a šikimátdehydrogenasy. / HPLC determination of gallic acid as a possible product of enzymatic reaction of shikimic acid, NADP+ and SDH.

Smolejová, Jana January 2017 (has links)
This diploma thesis deals with the development of an HPLC method for the determination of selected compounds participating in enzymatic reaction leading to the formation of gallic acid. The analysed reaction mixture contains the following reagents: shikimic acid, NADP+ and shikimatedehydrogenase (SDH) extracted from parsley; the presumed product of the reaction is gallic acid. Two chromatographic methods for the determination of the above mentioned compounds were developed using C18 HPLC column and porous graphitic carbon Hypercarb column. Molecular absorption spectrometric detection in the UV range was used in all measurements. Separation on the C18 column was found particularly suitable for analysing the composition of the end products of the reaction. Because of the NADP+ and shikimic acid peak overlap it is necessary to observe absorbance at 212 and 260 nm. Shikimic acid and NADP+ can be quantified due to the fact that shikimic acid does not absorb at 260 nm while NADP+ absorb radiation at both wavelengths. Separation via Hypercarb column was found particularly suitable for analysing the process of the reaction; additional products or intermediates can be seen in chromatograms compared to the C18 method. Determination with Hypercarb column is characterized by higher sensitivity and lower limit...
115

Deux résultats d'analyse harmonique sur un groupe P-adique tordu / Two results of Harmonic Anlysis on a twisted p-adic group

Cohen, Joël 10 December 2013 (has links)
Dans cette thèse, nous montrons deux résultats d'analyse harmonique sur un groupe réductif p-adique tordu.Le premier résultat est un analogue non connexe au théorème matriciel de Paley Wiener. Soit G réductif p-adique (non nécessairement connexe). L'algèbre de Hecke des fonctions complexes sur G localement constantes à support compact agit les représentations complexe lisses irréductibles de G. L'action d'une fonction est vue comme sa transformée de Fourier. Le théorème fournit une caractérisation de l'image de l'algèbre de Hecke par la transformée de Fourier, ainsi qu'une formule d'inversion.Le second résultat établit une identité spectrale sur le groupe GLn tordu (avec n pair, sur un corps p-adique) pour l'intégrale orbitale tordue sur la classe de conjugaison tordue stable des matrices antisymétriques inversibles. Cette dernière s'exprime comme une intégrale sur les représentations irréductibles tempérées auto-duales de GLn dont le paramètre de Langlands est symplectique. La preuve repose sur le transfert endoscopique. / In this thesis, we show tow results of Harmonic Analysis on réductive p-adic group.The first results extends the matrix Paley-Wiener theorem to the non-connected case. Let G be reductive (non necessarily connected) p-adic group. The Hecke algebra of compactly supported locally constant complex functions on G acts on complex smooth irreducible representations of G. The action of a given function is seen as its Fourier transform. The theorem characterizes the image of the Hecke algebra under the Fourier transform and provides an inversion formula.The second result is the proof of a spectral identity on the so-called twisted GLn group (where n is even, on a p-adic field) for the twisted orbital integral over the twisted stable conjugacy class of antisymetric invertible matrices. We express it as an integral over those irreducible tempered auto-dual representations of GLn whose Langlands' parameter is symplectic. Our proof uses endoscopic transfer.
116

Certains études sur la minimalité et la propriété chaotique de dynamiques p-adicques et la régularité locale des series de Davenport avec translation de phase

Zhou, Dan 26 May 2009 (has links)
Dans cette thèse, nous étudions la minimalité et la propriété chaotique de systèmes dynamiques p-adiques. Nous étudions aussi des propriétés multifractales des séries de Davenport avec translation de phases. Dans la première partie, nous commençons par l'étude des systèmes dynamiques affines sur Zp. Nous trouvons une condition nécessaire et suffisante pour qu'un tel système soit minimal. En outre, nous exhibons toutes ses composantes strictement ergodiques si le système n'est pas minimal. De plus, nous étudions aussi les systèmes monômes sur le groupe 1+pZp. Ensuite nous étudions les polynômes localement dilatants et transitifs. Pour un tel polynôme, limité sur son ensemble de Julia, nous prouvons qu'il est conjugué à un sous-shift de type fini. Dans la deuxième partie, nous étudions les séries de Davenport avec translation de phases. Après avoir calculé le saut d'une telle série à chaque point, nous trouvons l'ensemble des points discontinus et obtenons une condition nécessaire et suffisante pour qu'une série de Davenport avec translation de phases soit continue sur R. La convergence ponctuelle de la série est aussi étudiée. Ensuite, nous estimons la borne inférieure de l'exposant hölderien de la série de Davenport avec de phase rationnelle et la borne supérieure du spectre de la singularité / In this thesis, we study the minimality and the chaotic property of p-adic dynamical systems and some multifractal properties of phase translated Davenport series. In the first part, we begin with the study of affine dynamical systems on Zp. We find a necessary and sufficient condition for such a system to be minimal. Furthermore, all its strictly ergodic components are exhibited when it is not minimal. In addition, we study monomial systems on the group 1 + pZp. Then transitive locally expanding polynomial systems are studied. It is proved that such a polynomial system, restricted to its Julia set, is conjugate to a subshift of finite type. In the second part, we study phase translated Davenport series. After having calculated the jump of the series at each point, we characterize the set of discontinuous points and get a sufficient and necessary condition for the series to be continuous on R. Furthermore, the pointwise convergence of the series is studied. Then we estimate the lower bound of the Hölder-exponent of rational translated Davenport series and get an upper bound estimation on the spectrum of singularity. The lower bound of the Hölder-exponent are also discussed for some irrational translated series
117

Modulo l-representations of p-adic groups SL_n(F) / Représentations modulo l des groupes p-adiques SL_n(F)

Cui, Peiyi 06 September 2019 (has links)
Fixons un nombre premier p. Soit k un corps algébriquement clos de caractéristique l différent que p. Nous construisons les k-types maximaux simples cuspidaux des sous-groupes de Levi M' de SL_n(F), où F est un corps local non archimédien de caractéristique résiduelle p. Nous montrons que le support supercuspidal des k-représentations lisses irréductibles de M' est unique à M'-conjugaison près, quand F est soit un corps fini de caractéristique p soit un corps local non-archimédien de caractéristique résiduelle p. / Fix a prime number p. Let k be an algebraically closed field of characteristic l different than p. We construct maximal simple cuspidal k-types of Levi subgroups M' of SL_n(F), where F is a non-archimedean locally compact field of residual characteristic p. And we show that the supercuspidal support of irreducible smooth k-representations of Levi subgroups M' of SL_n(F) is unique up to M'-conjugation, when F is either a finite field of characteristic p or a non-archimedean locally compact field of residual characteristic p.
118

P-adic local Langlands correspondence and geometry / Langlands p-adique : géometrie et programme

Chojecki, Przemyslaw 16 January 2015 (has links)
Cette these concerne la geometrie de la correspondance de Langlands p-adique. On donne la formalisation des methodes de Emerton, qui permettrait d'etablir la conjecture de Fontaine-Mazur dans le cas general des groupes unitaires. Puis, on verifie que ce formalism est satisfait dans la cas de U(3) ou on utilise la construction de Breuil-Herzig pour la correspondence p-adique. De point de vue local, on commence l'etude de cohomologie modulo p et p-adiques de tour de Lubin-Tate pour GL_2(Q_p). En particulier, on demontre que on peut retrouver la correspondence de Langlands p-adique dans la cohomologie completee de tour de Lubin-Tate. / This thesis concerns the geometry behind the p-adic local Langlands correspondence. We give a formalism of methods of Emerton, which would permit to establish the Fontaine-Mazur conjecture in the general case for unitary groups. Then, we verify that our formalism works well in the case of U(3) where we use the construction of Breuil-Herzig as the input for the p-adic correspondence.From the local viewpoint, we start a study of the modulo p and p-adic cohomology of the Lubin-Tate tower for GL_2(Q_p). In particular, we show that we can find the local p-adic Langlands correspondence in the completed cohomology of the Lubin-Tate tower.
119

P-adic Gross-Zagier formula for Heegner points on Shimura curves over totally real fields / Formule de Gross-Zagier P-adique pour les points de Heegner sur les courbes de Shimura sur corps totalement réels

Ma, Li 30 September 2014 (has links)
Le résultat principal de ce texte est une généralisation de la formule de Gross-Zagier p-adique de Perrin-Riou au cas de courbes de Shimura sur les corps totalement réels. Soit F un corps totalement réel. Soit f une forme modulaire de Hilbert sur F de poids parallel 2, qui est une forme nouvelle et est ordinaire en p. Soit E est une extension quadratique totalement imaginaire de F de discriminant premier à p et au conducteur de f. On peut construire une fonction L p-adique qui interpole valeurs spéciales de la fonction L complexe associée à f, E et caractères de Hecke d'ordre fini de E. La formule p-adique de Gross-Zagier relie la dérivée centrale de cette fonction L p-adique à la hauteur d'un divisor de Heegner sur une certaine courbe de Shimura. La stratégie de la preuve est proche de celle du travail original de Perrin-Riou. Dans la partie analytique, on construit le noyau analytique par calculs adéliques; dans la partie géométrique, on décompose le noyau géométrique en deux parties: places hors de p et places divisant p. Pour les places hors de p, les hauteurs p-adiques sont essentiellement des nombres d'intersection et sont calculées dans les travaux de S. Zhang, et il s'avère que cette partie est bien liée au noyau analytique. Pour les places divisant p, on utilise la méthode dans le travail de J. Nekovar pour montrer que la contribution de cette partie est nulle. / The main result of this text is a generalization of Perrin-Riou's p-adic Gross-Zagier formula to the case of Shimura curves over totally real fields. Let F be a totally real field. Let f be a Hilbert modular form over F of parallel weight 2, which is a new form and is ordinary at p. Let E be a totally imaginary quadratic extension of F of discriminant prime to p and to the conductor of f. We may construct a p-adic L function that interpolates special values of the complex L functions associated to f, E and finite order Hecke characters of E. The p-adic Gross-Zagier formula relates the central derivative of this p-adic L function to the p-adic height of a Heegner divisor on a certain Shimura curve. The strategy of the proof is close to that of the original work of Perrin-Riou. In the analytic part, we construct the analytic kernel via adelic computations, in the geometric part, we decompose the geometric kernel into two parts: places outside p and places dividing p. For places outside p, the p-adic heights are essentially intersection numbers and are computed in works of S. Zhang, and it turns out that this part is closely related to the analytic kernel. For places dividing p, we use the method in the work of J. Nekovar to show that the contribution of this part is zero.
120

Comptage des systèmes locaux ℓ-adiques sur une courbe / Counting ℓ-adic local systems on a curve

Yu, Hongjie 10 July 2018 (has links)
Soit X1 une courbe projective lisse et géométriquement connexe sur un corps fini Fq avec q = pn éléments où p est un nombre premier. Soit X le changement de base de X1 à une clôture algébrique de Fq. Nous donnons une formule pour le nombre des systèmes locaux ℓ-adiques (ℓ ≠ p) irréductibles de rang donné sur X fixé par l’endomorphisme de Frobenius. Nous montrons que ce nombre est semblable à une formule de point fixe de Lefschetz pour une variété sur Fq, ce qui généralise un résultat de Drinfeld en rang 2 et prouve une conjecture de Deligne. Pour ce faire, nous passerons du côté automorphe, utiliserons la formule des traces d’Arthur non-invariante, et relierons le nombre cherché avec le nombre Fq-points de l’espace des modules des fibrés de Higgs stables. / Let X1 be a projective, smooth and geometrically connected curve over Fq with q = pn elements where p is a prime number, and let X be its base change to an algebraic closure of Fq.We give a formula for the number of irreducible ℓ-adic local systems (ℓ ≠ p) with a fixed rank over X fixed by the Frobenius endomorphism.We prove that this number behaves like a Lefschetz fixed point formula for a variety over Fq, which generalises a result of Drinfeld in rank 2 and proves a conjecture of Deligne. To do this, we pass to the automorphic side by Langlands correspondence, then use Arthur’s non-invariant trace formula and link this number to the number of Fq-points of the moduli space of stable Higgs bundles.

Page generated in 0.0433 seconds