Spelling suggestions: "subject:"adc"" "subject:"adi""
131 |
A p-adic quantum group and the quantized p-adic upper half planeWald, Christian 01 September 2017 (has links)
Eine Quantengruppe ist eine nichtkommutative und nichtkokommutative Hopfalgebra. In dieser Arbeit konstruieren wir eine Deformation der lokalkonvexen Hopfalgebra der lokalanalytischen Funktionen auf GL(2,O), wobei O hier der Bewertungsring einer endlichen Erweiterung der p-adischen Zahlen ist. Wir zeigen, dass diese Deformation eine nichtkommutative, nichtkokommutative lokalkonvexe Hopfalgebra, also eine p-adische Quantengruppe, ist. Unser Hauptresultat ist, dass das starke Dual dieser Deformation eine Fréchet-Stein Algebra ist. Dies bedeutet, dass das starke Dual ein projektiver Limes von noetherschen Banachalgebren unter rechtsflachen Übergangsabbildungen ist. Im kommutativen Fall wurde dies von P. Schneider und J. Teitelbaum gezeigt. Unser Beweis im nichtkommutativen Fall benutzt Ideen von M. Emerton, der einen alternativen Beweis im kommutativen Fall gefunden hat. Für unseren Beweis beschreiben wir gewisse Vervollständigungen der quanten-einhüllenden Algebra und benutzen die Technik der partiell dividierten Potenzen. Eine wichtige Klasse lokalanalytischer Darstellungen von GL(2,K) wird mithilfe globaler Schnitte von Linienbündeln auf der p-adischen oberen Halbebene konstruiert. Wir konstruieren ein nichtkommutatives Analogon der p-adischen oberen Halbebene, von dem wir erwarten, dass es interessante Darstellungen unserer p-adischen Quantengruppe induziert. Die wichtigsten Hilfsmittel der Konstruktion sind die Maninsche Quantenebene, der Bruhat-Tits Baum für PGL(2,K) und die Theorie der algebraischen Mikrolokalisierung. / A quantum group is a noncommutative noncocommutative Hopf algebra. In this thesis we deform the locally convex Hopf algebra of locally analytic functions on GL(2,O), where O is the valuation ring of a finite extension of the p-adic numbers. We show that this deformation is a noncommutative noncocommutative locally convex Hopf algebra, i.e. a p-adic quantum group. Our main result is that the strong dual of our deformation is a Fréchet Stein algebra, i.e. a projective limit of Noetherian Banach algebras with right flat transition maps. This was shown in the commutative case by P. Schneider and J. Teitelbaum. For our proof in the noncommutative case we use ideas of M. Emerton, who gave an alternative proof of the Fréchet Stein property in the commutative case. For the proof we describe completions of the quantum enveloping algebra and use partial divided powers. An important class of locally analytic representations of GL(2,K) is constructed from global sections of line bundles on the p-adic upper half plane. We construct a noncommutative analogue of an affine version of the p-adic upper half plane which we expect to give rise to interesting representations of our p-adic quantum group. We construct this space by using the Manin quantum plane, the Bruhat-Tits tree for PGL(2,K) and the theory of algebraic microlocalization.
|
132 |
On the Unramified Fontaine-Mazur Conjecture and its generalizationsLuo, Yufan 08 December 2023 (has links)
Diese Dissertation untersucht Galois-Erweiterungen von Zahlkörpern und die Unverzweigte Fontaine-Mazur-Vermutung für p-adische Galois-Darstellungen und deren Verallgemeinerungen. Wir beweisen viele grundlegende Fälle der Vermutung und liefern einige nützliche Kriterien zur Überprüfung. Darüber hinaus schlagen wir mehrere verschiedene Strategien vor, um die Vermutung anzugreifen und auf einige spezielle Fälle zu reduzieren. Wir beweisen auch viele neue Ergebnisse der Vermutung im zweidimensionalen Fall. Als Anwendung beweisen wir die Endlichkeit der unverzweigten Galois-Deformationsringe unter der Annahme eines speziellen Falles der Vermutung und geben einige Gegenbeispiele zur sogenannten Dimension-Vermutung für Galois-Deformationsringe unter der Annahme der Vermutung. / This thesis studies Galois extensions of number fields, and the Unramified Fontaine-Mazur Conjecture for p-adic Galois representations and its generalizations. We prove many basic cases of the conjecture, and provide some useful criterions for verifying it. In addition, we propose several different strategies to attack the conjecture and reduce it to some special cases. We also prove many new results of the conjecture in the two-dimensional case. As an application, we prove the finiteness of unramified Galois deformation rings assuming a special case of the conjecture, and we give some counterexamples to the so-called dimension conjecture for Galois deformation rings assuming the conjecture.
|
133 |
On G-(phi,nabla)-modules over the Robba ringYe, Shuyang 06 August 2019 (has links)
Sei $K$ eine endliche Erweiterung von $QQ_p $ und sei $R$ der Robba-Ring mit Koeffizienten in $K$ sein, die mit einem absoluten Frobenius-Lift $phi$ ausgestattet sind. Sei $F$ der Fixköper von $K$ unter $phi $ und sei $G$ eine verbundene reduktive Gruppe über $F$. Diese Arbeit untersucht $G$-$ (phi,nabla)$-Module über $R$, nämlich $(phi,nabla)$-Module über $R$ mit einer zusätzlicher $G$-Struktur.
In Kapitel 3 konstruieren wir einen gefilterten Faserfunktor aus der Darstellungskategorie von $G$ auf endlich-dimensionalen $F$-Vektorräumenbis zur Kategorie von $QQ$-gefilterten Modulen über $R$, und beweisen, dass dieser Funktor spaltbar ist. In Kapitel 4 beweisen wir eine $G$-Version des $p$-adischen lokalen Monodromie-Satzes. In Kapitel 5 beweisen wir eine $G$-Version des logarithmischen lokalen Monodromie-Satzes unter bestimmten Annahmen. Als Anwendung fügen wir jedem $G$-$(phi,nabla)$-Modul eine Weil-Deligne-Darstellung der Weil-Gruppe $W_{kk((t))} $ in $G(K^{nr})$ an, wobei $kk$ der Restklassenkörper von $K$, und $K^{nr}$ die maximal unverzweigte Erweiterung von $K$ ist. / Let $K$ be a finite extension of $QQ_p$ and let $R$ be the Robba ring with coefficients in $K$, equipped with an absolute Frobenius lift $phi$. Let $F$ be the fixed field of $K$ under $phi$ and let $G$ be a connected reductive group over $F$. This thesis investigates $G$-$(phi,nabla)$-modules over $R$, namely $(phi,nabla)$-modules over $R$ with an additional $G$-structure.
In Chapter 3, we construct a filtered fiber functor from the category of representations of $G$ on finite-dimensional $F$-vector spaces to the category of $QQ$-filtered modules over $R$, and prove that this functor is splittable. In Chapter 4, we prove a $G$-version of the $p$-adic local monodromy theorem. In Chapter 5, we prove a $G$-version of the logarithmic $p$-adic local monodromy theorem under certain assumptions. As an application, we attach to each $G$-$(phi,nabla)$-module a Weil-Deligne representation of the Weil group $W_{kk((t))}$ into $G(K^{nr})$, where $kk$ is the residue field of $K$, and $K^{nr}$ is the maximal unramified extension of $K$.
|
134 |
Expansions et néostabilité en théorie des modèles / Expansions and neostability in model theoryElbée, Christian d' 20 June 2019 (has links)
Cette thèse est consacrée à l’étude d’expansions de certaines structures algébriques et leur place dans la classification modèle-théorique des structures, initiée par Shelah. La première partie aborde de manière abstraite l’expansion d’une théorie par un prédicat aléatoire –ou générique– pour une sous-structure modèle d’un réduit de la théorie. Nous éla- borons un critère pour l’existence d’une telle expansion, qui est vérifié pour certaines théories de structures algébriques. En particulier, nous montrons l’existence de sous-groupes additifs génériques pour certaines théories de corps, ainsi que de sous-groupes multiplicatifs génériques pour les corps algébriquement clos en toute caractéristique. Nous étudions aussi la conservation de diverses notions de néostabilité, en particulier nous montrons que cette expansion préserve la propriété NSOP 1 , mais en général ne préserve pas la simplicité. Nous produisons par cette construction de nouveaux exemples de structures NSOP 1 non simples, et faisons une étude toute particulière de l’une d’entre elles : l’expansion d’un corps algébriquement clos de caractéristique positive par un sous-groupe additif générique. La deuxième partie étudie les expansions du groupe des entiers par des valuations p-adiques. Nous montrons l’élimination des quantificateurs dans un langage naturel et calculons le dp-rang d’une telle expansion : il est égal au nombre de valuations considérées. L’expansion du groupe des entiers par une seule valuation p-adique est donc une nouvelle expansion dp-minimale du groupe des entiers. Enfin, nous montrons que cette dernière n’admet pas de structures intermédiaires : tout ensemble définissable dans l’expansion est soit définissable dans le groupe des entiers, soit capable de “reconstruire” la valuation en utilisant seulement la structure additive / This thesis is concerned with the expansions of some algebraic structures and their fit in Shelah’s classification landscape. The first part deals with the expansion of a theory by a random –or generic– predicate for a substructure model of a reduct of the theory. We describe a setup allowing such an expansion to exist, which is suitable for several algebraic structures. In particular, we obtain the existence of additive generic subgroups of some theories of fields and multiplicative generic subgroups of algebraically closed fields in all characteristic. We also study the preservation of certain neostability notions, for instance, the NSOP 1 property is preserved but the simplicity is not in general. Thus, this construction produces new examples of NSOP 1 not simple theories, and we study in depth a particular example: the expansion of an algebraically closed field of positive characteristic by a generic additive subgroup. The second part studies expansions of the groups of integers by p-adic valuations. We prove quantifier elimination in a natural language and compute the dp-rank of these expansions: it equals the number of distinct p-adic valuations considered. Thus, the expansion of the integers by one p-adic valuation is a new dp-minimal expansion of the group of integers. Finally, we prove that the latter expansion does not admit intermediate structures: any definable set in the expansion is either definable in the group structure or is able to "reconstruct" the valuation using only the group operation
|
135 |
Wilbrink定理的探討 / Variations on Wilbrink's Theorem楊茂昌, Yang, Mao Chang Unknown Date (has links)
本文希望藉著K.T Arasu, D.Jungnickel, A.Pott推廣Wilbrink定理的方法去尋找Wilbrink等式的推廣式在p<sup>k</sup>∥n,k≧4的推廣式和其應用。 / In this thesis we formulate and provide rigorous proofs of Wilbrink's theorem and it's variations due to Arasu, A.Pott and D.Jungnickel. some questions on further generalizations of Wilbrink's theorem are discussed; known generalization are study in A.Pott's dissertation.
|
136 |
Abstract Numeration Systems: Recognizability, Decidability, Multidimensional S-Automatic Words, and Real NumbersCharlier, Emilie 07 December 2009 (has links)
In this doctoral dissertation, we studied and solved several questions regarding positional and abstract numeration systems. Each particular problem is the focus of a chapter. The first problem concerns the study of the preservation of recognizability under multiplication by a constant in abstract numeration systems built on polynomial regular languages. We obtained several results generalizing those from P. Lecomte and M. Rigo. The second problem we considered is a decidability problem, which was already studied, most notably, by J. Honkala and A. Muchnik. For our part, we studied this problem for two new cases: the linear positional numeration systems and the abstract numeration systems. Next, we focused on the extension to the multidimensional setting of a result of A. Maes and M.~Rigo regarding S-automatic infinite words. We obtained a characterization of multidimensional S-automatic words in terms of multidimensional (non-necessarily uniform) morphisms. This result can be viewed as the analogous of O. Salon's extension of a theorem of A. Cobham. Finally, generalizing results of P. Lecomte and M. Rigo, we proposed a formalism to represent real numbers in the general framework of abstract numeration systems built on languages that are not necessarily regular. This formalism encompasses in particular the rational base numeration systems, which have been recently introduced by S. Akiyama, Ch. Frougny, and J. Sakarovitch. Finally, we ended with a list of open questions in the continuation of this work./Dans cette dissertation, nous étudions et résolvons plusieurs questions autour des systèmes de numération abstraits. Chaque problème étudié fait l'objet d'un chapitre. Le premier concerne l'étude de la conservation de la reconnaissabilité par la multiplication par une constante dans des systèmes de numération abstraits construits sur des langages réguliers polynomiaux. Nous avons obtenus plusieurs résultats intéressants généralisant ceux de P. Lecomte et M. Rigo. Le deuxième problème auquel je me suis intéressée est un problème de décidabilité déjà étudié notamment par J. Honkala et A. Muchnik et ici décliné en deux nouvelles versions : les systèmes de numération de position linéaires et les systèmes de numération abstraits. Ensuite, nous nous penchons sur l'extension au cas multidimensionnel d'un résultat d'A. Maes et de M. Rigo à propos des mots infinis S-automatiques. Nous avons obtenu une caractérisation des mots S-automatiques multidimensionnels en termes de morphismes multidimensionnels (non nécessairement uniformes). Ce résultat peut être vu comme un analogue de l'extension obtenue par O. Salon d'un théorème de A. Cobham. Finalement, nous proposons un formalisme de la représentation des nombres réels dans le cadre général des systèmes de numération abstraits basés sur des langages qui ne sont pas nécessairement réguliers. Ce formalisme englobe notamment le cas des numérations en bases rationnelles introduits récemment par S. Akiyama, Ch. Frougny et J. Sakarovitch. Nous terminons par une liste de questions ouvertes dans la continuité de ce travail.
|
137 |
Purity relative to classes of finitely presented modulesMehdi, Akeel Ramadan January 2013 (has links)
Any set of finitely presented left modules defines a relative purity for left modules and also apurity for right modules. Purities defined by various classes are compared and investigated,especially in the contexts of modules over semiperfect rings and over tame hereditary, andmore general, finite-dimensional algebras. Connections between the indecomposable relativelypure-injective modules and closure in the full support topology (a refinement of theZiegler spectrum) are described.Duality between left and right modules is used to define the concept of a class of leftmodules and a class of right modules forming an almost dual pair. Definability of suchclasses is investigated, especially in the case that one class is the closure of a set of finitelypresented modules under direct limits. Elementary duality plays an important role here.Given a set of finitely presented modules, the corresponding proper class of relativelypure-exact sequences can be used to define a relative notion of cotorsion pair, which weinvestigate.The results of this thesis unify and extend a wide range of results in the literature.
|
138 |
p-adic and mod p local-global compatibility for GLn(ℚp) / La compatibilité local-global p-adique et modulo p pour GLn(ℚp)Qian, Zicheng 02 July 2019 (has links)
Cette thèse est consacrée à deux aspects du programme de Langlands local p-adique et de la compatibilité local-global p-adique.Dans la première partie, j'étudie la question de savoir comment extraire, d'un certain sous-espace Hecke-isotypique de formes automorphes modulo p, suffisament d'invariants d'une représentation galoisienne. Soient p un nombre premier, n>2 un entier, et F un corps à multiplication complexe dans lequel p est complètement décomposé. Supposons qu'une représentation galoisienne automorphe continue r-:Gal(Q-/F)→GLn(F-p) est triangulaire supérieure et suffisament générique ( dans un certain sens ) en une place w au-dessus de p. On montre, en admettant un résultat d'élimination de poids de Serre prouvé dans [LLMPQ], que la classe d'isomorphisme de r-|_Gal(Q-p/Fw) est déterminée par l'action de GLn(Fw) sur un espace de formes automorphes modulo p découpé par l'idéal maximal associée à r- dans une algèbre de Hecke. En particulier, on montre que la partie sauvagement ramifiée de r-|_Gal(Q-p/Fw) est déterminée par l'action de sommes de Jacobi ( vus comme éléments de Fp[GLn(Fp)] ) sur cet espace.La deuxième partie de ma thèse vise à établir une relation entre les résultats précédents de [Schr11], [Bre17] and [BD18]. Soient E une extension finie de Qp suffisamment grande et ρp: Gal(Q-p/Qp)→GL3(E) une représentation p-adique semi-stable telle que la représentation de Weil-Deligne WD(ρp) associée a un opérateur de monodromie N de rang 2 et que la filtration de Hodge associée est non-critique. On sait que la filtration de Hodge de ρp dépend de trois invariants dans E. On construit une famille de représentations localement analytiques Σ^min(λ, L1, L2, L3) qui dépend de trois invariants L1, L2, L3 dans E et telle que chaque représentation contient la représentation localement algébrique Algotimes Steinberg déterminée par ρp. Quand ρp provient, pour un groupe unitaire convenable G/Q, d'une représentation automorphe π de G(A_Q) avec un niveau fixé U^p premier avec p, on montre ( sous quelques hypothèses techniques ) qu'il existe une unique représentation localement analytique dans la famille ci-dessus qui est une sous-représentation du sous-espace Hecke-isotypique associé dans la cohomologie complétée de niveau U^p. On rappelle que [Bre17] a construit une famille de représentations localement analytiques qui dépend de quatre invariants (voir (4) dans [Bre17]) avec une propriété similaire. On donne un critère purement de théorie de représentation: si une représentation Π dans la famille de Breuil se plonge dans un certain sous-espace Hecke-isotypique de la cohomologie complétée, alors elle se plonge nécessairement dans une Σ^min(λ, L1, L2, L3) pour certains choix de L1, L2, L3 dans E qui sont déterminés explicitement par Π. De plus, certains sous-quotients naturels de Σ^min(λ, L1, L2, L3) permettent de construite un complexe de représentations localement analytiques qui "réalise" l'objet dérivé abstrait Σ(λ, underline{L}) defini dans [Schr11]. / This thesis is devoted to two aspects of the p-adic local Langlands program and p-adic local-global compatibility.In the first part, I study the problem of how to capture enough invariants of a local Galois representation from a certain Hecke-isotypic subspace of mod p automorphic forms. Let p be a prime number, n>2 an integer, and F a CM field in which p splits completely. Assume that a continuous automorphic Galois representation r-:Gal(Q-/F)→GLn(F-p) is upper-triangular and satisfies certain genericity conditions at a place w above p, and that every subquotient of r-|_Gal(Q-p/Fw) of dimension >2 is Fontaine-Laffaille generic. We show that the isomorphism class of r-|_Gal(Q-p/Fw) is determined by GLn(Fw)-action on a space of mod p algebraic automorphic forms cut out by the maximal ideal of a Hecke algebra associated to r-, assuming a weight elimination result which is now a theorem to appear in [LLMPQ]. In particular, we show that the wildly ramified part of r-|_Gal(Q-p/Fw) is determined by the action of Jacobi sum operators ( seen as elements of Fp[GLn(Fp)] ) on this space.The second part of my thesis aims at clarifying the relation between previous results in [Schr11], [Bre17] and [BD18]. Let E be a sufficiently large finite extension of Qp and ρp be a p-adic semi-stable representation Gal(Q-p/Qp)→GL3(E) such that the Weil-Deligne representation WD(ρp) associated with it has rank two monodromy operator N and the Hodge filtration associated with it is non-critical. We know that the Hodge filtration of ρp depends on three invariants in E. We construct a family of locally analytic representations Σ^min(λ, L1, L2, L3) of GL3(Qp) depending on three invariants L1, L2, L3 in E with each of the representation containing the locally algebraic representation Algotimes Steinberg determined by ρp. When ρp comes from an automorphic representation π of G(A_Q) with a fixed level U^p prime to p for a suitable unitary group G/Q, we show ( under some technical assumption ) that there is a unique locally analytic representation in the above family that occurs as a subrepresentation of the associated Hecke-isotypic subspace in the completed cohomology with level U^p. We recall that [Bre17] constructed a family of locally analytic representations depending on four invariants ( cf. (4) in [Bre17] ) with a similar property. We give a purely representation theoretic criterion: if a representation Π in Breuil's family embeds into a certain Hecke-isotypic subspace of completed cohomology, then it must equally embed into Σ^min(λ, L1, L2, L3) for certain choices of L1, L2, L3 in E determined explicitly by Π. Moreover, certain natural subquotients of Σ^min(λ, L1, L2, L3) give a true complex of locally analytic representations that realizes the derived object Σ(λ, underline{L}) [Schr11]. Consequently, the family of locally analytic representations Σ^min(λ, L1, L2, L3) give a relation between the higher L-invariants studied in [Bre17] as well as [BD18] and the p-adic dilogarithm function which appears in the construction of Σ^min(λ, L1, L2, L3) in [Schr11].
|
Page generated in 0.0448 seconds