Spelling suggestions: "subject:"adc"" "subject:"adi""
91 |
Algebraic Dynamical Systems, Analytical Results and Numerical SimulationsNyqvist, Robert January 2007 (has links)
In this thesis we study discrete dynamical system, given by a polynomial, over both finite extension of the fields of p-adic numbers and over finite fields. Especially in the p-adic case, we study fixed points of dynamical systems, and which elements that are attracted to them. We show with different examples how complex these dynamics are. For certain polynomial dynamical systems over finite fields we prove that the normalized average of the numbers of linear factors modulo prime numbers exists. We also show how to calculate the average, by using Chebotarev's Density Theorem. The non-normalized version of the average of the number of linear factors of linearized polynomials modulo prime numbers, tends to infinity, so in that case we find an asymptotic formula instead. We have also used a computer to study different behaviors, such as iterations of polynomials over the p-adic fields and the asymptotic relation mention above. In the last chapter we present the computer programs used in different part of the thesis.
|
92 |
Monomial Dynamical Systems in the Fields of p-adic Numbers and Their Finite ExtensionsNilsson, Marcus January 2005 (has links)
No description available.
|
93 |
Extensions of Presburger arithmetic and model checking one-counter automataLechner, Antonia January 2016 (has links)
This thesis concerns decision procedures for fragments of linear arithmetic and their application to model-checking one-counter automata. The first part of this thesis covers the complexity of decision problems for different types of linear arithmetic, namely the existential subset of the first-order linear theory over the p-adic numbers and the existential subset of Presburger arithmetic with divisibility, with all integer constants and coefficients represented in binary. The most important result of this part is a new upper complexity bound of <b>NEXPTIME</b> for existential Presburger arithmetic with divisibility. The best bound that was known previously was <b>2NEXPTIME</b>, which followed directly from the original proof of decidability of this theory by Lipshitz in 1976. Lipshitz also gave a proof of <b>NP</b>-hardness of the problem in 1981. Our result is the first improvement of the bound since this original description of a decision procedure. Another new result, which is both an important building block in establishing our new upper complexity bound for existential Presburger arithmetic with divisibility and an interesting result in its own right, is that the decision problem for the existential linear theory of the p-adic numbers is in the Counting Hierarchy <b>CH</b>, and thus within <b>PSPACE</b>. The precise complexity of this problem was stated as open by Weispfenning in 1988, who showed that it is in <b>EXPTIME</b> and <b>NP</b>-hard. The second part of this thesis covers two problems concerning one-counter automata. The first problem is an LTL synthesis problem on one-counter automata with integer-valued and parameterised updates and with equality tests. The decidability of this problem was stated as open by Göller et al. in 2010. We give a reduction of this problem to the decision problem of a subset of Presburger arithmetic with divisibility with one quantifier alternation and a restriction on existentially quantified variables. A proof of decidability of this theory is currently under review. The final result of this thesis concerns a type of one-counter automata that differs from the previous one in that it allows parameters only on tests, not actions, and it includes both equality and disequality tests on counter values. The decidability of the basic reachability problem on such one-counter automata was stated as an open problem by Demri and Sangnier in 2010. We show that this problem is decidable by a reduction to the decision problem for Presburger arithmetic.
|
94 |
Números p-ádicosGusmão, Ítalo Moraes de Melo 25 August 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-29T16:07:28Z
No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5) / Approved for entry into archive by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-29T16:11:36Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5) / Made available in DSpace on 2017-08-29T16:11:36Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5)
Previous issue date: 2015-08-25 / We introduce and de ne the p-adics integer numbers as a result of a search for solutions,
for a congruences system that derives from a variable polynomial equation
with rational coe cients. We evidence that the p-adic integers set is strictly larger
than the integers. We present a criterion so that a rational that holds a correspondent
in a p-adic integers set. We search for the possibility to represent irrational and
complex numbers as p-adics integers. Algebraically, the p-adic integers set will be
an integral domain and, from this, we search for the construction of p-adic integers
quotient eld so that shall form the p-adic rationals eld, from a purely algebraically
point of view. In the second part, we will expose the bases for the construction of
a norm that's di erent from the usual, establishing so a new metric in the rational
numbers set and the construction of a non-archimedian eld. / Apresentamos e de nimos os números inteiros p-ádicos como o resultado de uma
busca por soluções, para um sistema de congruências, que parte de uma equação
polinomial de uma variável, com coe cientes racionais. Constatamos que o conjunto
dos inteiros p-ádicos é estritamente maior que os inteiros. Mostramos um critério
para que um racional possua um correspondente num conjunto de inteiros p-ádicos.
Buscamos a possibilidade de representarmos números irracionais e números complexos
como inteiros p-ádicos. Algebricamente, o conjunto dos inteiros p-ádicos será
um domínio de integridade e, partindo disto, buscamos a construção de um corpo de
frações dos inteiros p-ádicos, que formarão, assim, o corpo dos racionais p-ádicos, de
um ponto de vista puramente algébrico. Na segunda parte, vamos expor os fundamentos
para a construção de uma norma diferente da habitual, estabelecendo assim
uma nova métrica, no conjunto dos números racionais, e a construção de um corpo
não-arquimediano.
|
95 |
Relèvements de représentations galoisiennes à valeurs dans des groupes algébriques / Lifting Galois representations with values in an algebraic groupHoang Duc, Auguste 21 October 2015 (has links)
Soient 1 -> N -> H -> H' -> 1 une suite exacte centrale de groupes algébriques sur Q_p^alg et F un corps de nombres. Etant donnée une représentation Galoisienne r' : Gal_F -> H', on s'intéresse à ses relèvements à valeurs dans H à travers le morphisme H -> H'. Un relèvement r : Gal_F -> H sera dit minimal, s'il est non-ramifié aux places où r' est non-ramifiée et est de Rham/semi-stable/cristalline aux places divisant p si r' l'est. Dans cette thèse, nous montrons l'existence de relèvements minimaux dans certains cas. / Let 1 -> N -> H -> H' -> 1 be an exact sequence of algebraic groups over Q_p^alg and F be a number field. Given a Galois representation r' : Gal_F -> H', we are interested in its lifts with values in H through the morphism H -> H'. We say a lift r : Gal_F -> H is minimal, if it is unramied at places where r' is unramified and is de Rham/semi-stable/crystalline at p-adic places if r' is so. In this thesis, we prove the existence of such minimal lifts in some cases.
|
96 |
p-adic Measures for Reciprocals of L-functions of Totally Real Number FieldsRazan Taha (11186268) 26 July 2021 (has links)
We generalize the work of Gelbart, Miller, Pantchichkine, and Shahidi on constructing p-adic measures to the case of totally real fields K. This measure is the Mellin transform of the reciprocal of the p-adic L-function which interpolates the special values at negative integers of the Hecke L-function of K. To define this measure as a distribution, we study the non-constant terms in the Fourier expansion of a particular Eisenstein series of the Hilbert modular group of K. Proving the distribution is a measure requires studying the structure of the Iwasawa algebra.
|
97 |
Stark-Heegner points and p-adic L-functions / Points de Stark-Heegner et fonctions L p-adiquesCasazza, Daniele 28 October 2016 (has links)
Soit K|Q un corps de nombres et soit ζK(s) sa fonction L complexe associée. La formule analytique du nombre de classes fournit un lien entre les valeurs spéciales de ζK(s) et les invariants du corps K. Elle admet une version Galois-équivariante. On a un schema similaire pour les courbes elliptiques. Soit E/Q une courbe elliptique et soit L(E/Q, s) sa fonction L complexe associée. La conjecture de Birch et Swinnerton-Dyer prédit un lien entre le comportement de L(E/Q, s) au point s = 1 et la structure des solutions rationnelles de l’équation definie par E. Comme la formule analytique du nombre de classes, la conjecture de Birch et Swinnerton-Dyer admet une version équivariante. La conjecture de Stark elliptique formulée par H. Darmon, A. Lauder et V. Rotger propose un analogue p-adique de la conjecture de Birch et Swinnerton-Dyer équivariante, qui nécessite certaines hypothèses. Dans leur article, les auteurs formulent la conjecture et donnent une démonstration dans certains cas où E a bonne réduction en p. Pour cela, ils utilisent la méthode de Garrett-Hida qui conduit à une factorisation de fonctions L p-adiques. Dans cette thèse on se concentre sur la conjecture de Stark elliptique et l’on montre comme il est possible d’étendre le résultat de Darmon, Lauder et Rotger. Dans le cas où E a bonne réduction en p on peut étendre le résultat en utilisant la méthode de Hida- Rankin. Cette méthode nous donne un contrôle meilleur sur les constantes apparaissant dans les formules et nous amène à une formule explicite contenant les invariants de la courbe elliptique. Pour obtenir le résultat on adapte la preuve du théorème principal de Darmon, Lauder et Rotger à notre cas et on utilise une formule p-adique de Gross et Zagier qui relie les valeurs spéciales de la fonction L padique de Bertolini-Darmon-Prasanna et les points de Heegner. Ensuite on voit comment étendre notre résultat et celui de Darmon-Lauder-Rotger au cas où E a réduction multiplicative en p. Dans ce cadre, on ne peut pas utiliser la fonction L p-adique de Bertolini-Darmon-Prasanna en raison de problèmes techniques. Pour éliminer cette difficulté on consid`ere la fonction L p-adique de Castellà. On utilise aussi la méthode de Garrett-Hida ainsi que la méthode d’Hida-Rankin et l’on obtient des résultats similaires aux cas de bonne réduction. / Let K|Q be a number field and let ζK(s) be its associated complex L-function. The analytic class number formula relates special values of ζK(s) with algebraic invariants of the field K itself. It admits a Galois equivariant refinement known as Stark conjectures. We have a very similar picture in the case of elliptic curves. Let E/Q be an elliptic curve and let L(E/Q, s) be its associated complex L-function. The conjecture of Birch and Swinnerton-Dyer relates the behaviour of L(E/Q, s) at s = 1 to the structure of rational solutions of the equation defined by E. The equivariant Birch and Swinnerton- Dyer conjecture is obtained including in the picture the action of Galois groups. The elliptic Stark conjecture formulated by H. Darmon, A. Lauder and V. Rotger purposes a p-adic analogue of the equivariant Birch and Swinnerton-Dyer conjecture, under several assumption. In their paper, the authors formulate the conjecture and prove it in some cases of good reduction of E at p using Garrett-Hida method and performing a factorization of p-adic L-functions. In this dissertation we focus on the elliptic Stark conjecture and we show how it is possible to extend the result of Darmon, Lauder and Rotger. In the case of good reduction of E at p we can slightly extend the result using Hida- Rankin method. This method also gives us a better control of the constants appearing in the result, thus yielding an explicit formula which contains invariants associated with the elliptic curve. To achieve the proof we mimic the main result of Darmon, Lauder and Rotger in our setting and we make use of a p-adic Gross-Zagier formula which relates special values of the Bertolini-Darmon-Prasanna p-adic L-function to Heegner points. In a second moment we extend both our result and Darmon-Lauder-Rotger result to the case of multi- plicative reduction of E at p. In this setting we cannot use Bertolini- Darmon Prasanna p-adic L-function due to some technical reasons. In order to avoid the problem we consider Castellà’s two variables p-adic L-function. We use both Garrett-Hida method and Hida-Rankin method. In the two cases we obtain formulae which are similar to those of the good reduction setting.
|
98 |
Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global / P-adic modular forms over unitary Shimura curves and local-global compatibilityDing, Yiwen 19 March 2015 (has links)
Cette thèse s'inscrit dans le cadre du programme de Langlands local p-adique. Soient L une extension finie de Q_p, \rho_L une représentation p-adique de dimension 2 du groupe de Galois Gal(\overline{Q_p}/L) de L, lorsque \rho_L provient d'une représentation \rho globale et modulaire (i.e. \rho apparaît dans la cohomologie étale des courbes de Shimura), on sait associer à \rho une représentation de Banach admissible de \GL_2(L), notée \widehat{\Pi}(\rho), en utilisant la théorie de la cohomologie étale complétée d'Emerton. Localement, lorsque \rho_L est cristalline (et assez générique), d'après Breuil, on sait associer à \rho_L une représentation localement analytique de \GL_2(L), notée \Pi(\rho_L). Dans cette thèse, on montre divers résultats sur la compatibilité entre les représentations \widehat{\Pi}(\rho) et \Pi(\rho_L), qui s'appelle la compatibilité local-global, dans la cas des courbes de Shimura unitaires. Par la théorie des représentations localement analytiques de \GL_2(L), le problème de compatibilité local-global se ramène à l'étude des variétés de Hecke X construites à partir du H^1-complété des courbes de Shimura unitaires. On montre des résultats sur la compatibilité local-global dans le cas non-critique en utilisant la théorie de la triangulation globale. On étudie ainsi les formes modulaires p-adiques sur les courbes de Shimura unitaires, à partir desquelles on peut construire des sous-espaces rigides de X à la manière de Coleman-Mazur. On montre l'existence des formes compagnons surconvergentes sur les courbes de Shimura unitaires en utilisant les théorèmes de comparaison p-adique, d'où on déduit des résultats sur la compatibilité local-global dans le cas critique. / The subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galois representation \rho (i.e. \rho appears in the étale cohomology of Shimura curves), one can associate to \rho an admissible Banach representation \widehat{\Pi}(\rho) of \GL_2(L) by using Emerton's completed cohomology theory. Locally, if \rho_L is crystalline (and sufficiently generic), following Breuil, one can associate to \rho_L a locally analytic representation \Pi(\rho_L) of \GL_2(L). In this thesis, we prove results on the compatibility of \widehat{\Pi}(\rho) and \Pi(\rho_L), called local-global compatibility, in the unitary Shimura curves case. By locally analytic representations theory (for \GL_2(L)), the problem of local-global compatibility can be reduced to the study of eigenvarieties X constructed from the completed H^1 of unitary Shimura curves. We prove results on local-global compatibility in non-critical case by using global triangulation theory. We also study the p-adic modular forms over unitary Shimura curves, from which we construct some closed rigid subspaces of X by Coleman-Mazur's method. We prove the existence of overconvergent companion forms (over unitary Shimura curves) by using p-adic comparison theorems, from which we deduce some results on local-global compatibility in critical case.
|
99 |
Produits tensoriels en théorie de Hodge p-adique / Tensor products in p-adic Hodge theoryDi Matteo, Giovanni 12 December 2013 (has links)
Soient K/Qp une extension finie et GK le groupe de Galois absolu de K. Cette thèse est consacrée à l'étude de produits tensoriels cristallins (ou semi-stables, ou de de Rham, ou de Hodge-Tate) de représentations p-adiques de GK,, ainsi que de produits tensoriels triangulins de représentations p-adiques de GK. On étudie également la situation où l'image d'une représentation p-adique par un foncteur de Schur (tel Symn ou Λn) est cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate). Les résultats présentés dans cette thèse sont énoncés pour les B-paires, et ils s'appliquent donc en particulier aux représentations p-adiques. / Let K/Qp be a finite extension and let GK be the absolute Galois group of K. This thesis is devoted to the study of crystalline (as well as semi-stable, de Rham, or Hodge-Tate) tensor products of p-adic representations of GK, as well as trianguline tensor products of p-adic representations of p-adic representations of GK. We also study the situation when the image of a p-adic representation by a Schur functor (for example, Symn or Λn) is crystalline (or semi-stable, or de Rham, or Hodge-Tate). The results presented in this thesis are stated for B-pairs, and apply in particular to p-adic representations.
|
100 |
Invariants d’Iwasawa dans les extensions de Lie p-adiques des corps de nombres / Iwasawa invariants in p-adic Lie extensions of number fielsPerbet, Guillaume 06 December 2011 (has links)
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généralisés dans les extensions de Lie p-adiques de corps de nombres.Ces invariants ont été introduits par Iwasawa pour les Zp-extensions. Les travaux de Venjakob sur la structure des modules sur l'algèbre d'Iwasawa d'un groupe de Lie p-adique ont permis d'en généraliser la définition à la théorie non-commutative. Par des techniques de descente et une étude algébrique fine de la structure des modules d'Iwasawa sur un groupe non-commutatif, on dégage des formules asymptotiques pour les p-groupes des classes généralisés le long d'une extension de corps de nombres de groupe de Galois p-valué. Ces formules ont pour paramètres les invariants d'Iwasawa de l'extension. Elles sont rendues plus précises dans le cas des Zp-extensions, où on remarque qu'un défaut de descente doit être pris en compte et est d'impact non négligeable sur le résultat final. Ces résultats asymptotiques sont ensuite exploités à l'aide de la théorie du miroir. Ceci conduit à des formules de dualité entre ramification et décomposition concernant les invariants d'Iwasawa / This thesis aim at exploring Iwasawa invariants attached to generalized p-class groups in p-adic Lie extensions of number fields. These invariants where introduced by Iwasawa for Zp-extensions. In his work on the structure of modules over the Iwasawa algebra of a p-adic Lie group, Venjakob extends the definition to the non commutative theory. Using descent techniques, along with a fine algebraic study of Iwasawa's modules structure over a non commutative group, we obtain asymptotic formulas for generalized p-class groups in a tower of number fields, with a p-valued group as Galois group. These formulas have Iwasawa invariants as parameters. They become more precise for Zp-extensions, where a significant descent default is involved. These asymptotic results are exploited thanks to reflexion theory. This leads to duality formulas between ramification and decomposition for Iwasawa invariants
|
Page generated in 0.0628 seconds