21 |
Next generation transduction pathways for nano-bio-chip array platformsJokerst, Jesse Vincent 24 October 2014 (has links)
In the following work, nanoparticle quantum dot (QD) fluorophores have been exploited to measure biologically relevant analytes via a miniaturized sensor ensemble to provide key diagnostic and prognostic information in a rapid, yet sensitive manner—data essential for effective treatment of many diseases including HIV/AIDS and cancer. At the heart of this “nano-bio-chip” (NBC) sensor is a modular chemical/cellular processing unit consisting of either a polycarbonate membrane filter for cell-based assays, or an agarose bead array for detection of biomarkers in serum or saliva. Two applications of the NBC sensor system are described herein, both exhibiting excellent correlation to reference methods ((R² above 0.94), with analysis times under 30 minutes and sample volumes below 50 [mu]L. First, the NBC sensor was employed for the sequestration and enumeration of T lymphocytes, cells specifically targeted by HIV, from whole blood samples. Several different conjugation methods linking QDs to recognition biomolecules were extensively characterized by biological and optical methods, with a thiol-linked secondary antibody labeling scheme yielding intense, specific signal. Using this technique, the photostability of QDs was exploited, as was the ability to simultaneously visualize different color QDs via a single light pathway, effectively reducing optical requirements by half. Further, T-cell counts were observed well below the 200/[mu]L discriminator between HIV and AIDS and across the common testing region, demonstrating the first reported example of cell counting via QDs in an enclosed, disposable device. Next, multiplexed bead-based detection of cancer protein biomarkers CEA, Her-2/Neu, and CA125 in serum and saliva was examined using a sandwich immunoassay with detecting antibodies covalently bound to QDs. This nano-based signal was amplified 30 times versus molecular fluorophores and cross talk in multiplexed experiments was less than 5%. In addition, molecular-level tuning of recognition elements (size, concentration) and agarose porosity resulted in NBC limits of detection two orders of magnitude lower than ELISA, values competitive with the most sensitive methods yet reported (0.021 ng/mL CEA). Taken together, these efforts serve to establish the valuable role of QDs in miniaturized diagnostic devices with potential for delivering biomedical information rapidly, reliably, and robustly. / text
|
22 |
Comparison between four commonly used methods for detection of small M-components in plasmaJonsson, Susanne January 2008 (has links)
<p>Analysis of M-components is an important part of the diagnosis of monoclonal gammopathies and for the evaluation of disease response during treatment. In this project, two widely used electrophoresis methods and their corresponding immunotyping method were compared to evaluate the sensitivity of each method for the detection of small M-components. The project included 30 plasma samples from patients with identified M-components; 10 samples containing each IgG, IgA and IgM, respectively. All samples were diluted with normal EDTA plasma to achieve M-components of 5,00g/L. The samples were then serially diluted to achieve M-component concentrations of; 5,00, 2,50, 1,25, 0,63, 0,31 and 0,16g/L. All 180 samples were analysed with agarose gel electrophoresis and capillary electrophoresis. The dilutions above and below the detection level of each method were then analysed with immunofixation and immunosubtraction. The results showed good agreement between agarose gel electrophoresis and capillary electrophoresis in the highest concentrations of IgG and IgM. With agarose gel electrophoresis, IgA was detected in the same location as transferrin and the lowest concentration detected were therefore 1,25g/L. Besides the samples containing IgG, immunofixation was the most sensitive method.</p>
|
23 |
Evaluation of Prototype Cell Delivery Catheters Using Agarose Gel and Cell Culture ExperimentsPanse, Sagar 01 January 2006 (has links)
Neurodegenerative diseases and brain tumors affect millions of patients worldwide and are associated with significant morbidity and mortality. The blood brain barrier constitutes a major obstacle to delivery of therapeutic agents administered systemically for treating these disorders. Intracranial drug delivery provides a novel way of bypassing the blood brain barrier and achieving high concentration of therapeutic agents in the brain while avoiding systemic side effects. However damage to tissues during insertion of catheters, release of air in the brain and consequent backtracking of dye are some disadvantages with this mode of treatment. We evaluated prototype cell delivery catheters (each with outer and inner catheter) developed to minimize these complications. The catheters (1.6 mm small bore and 2.0 mm large bore) were evaluated using agarose gel and cell culture experiments. We initially delivered pheochromocytoma (PC 12) cells through a 25-gauge syringe needle to optimize cell growth. We observed in the agarose gel experiments that when the inner catheter was filled and then inserted with the outer catheter into gel, no air bubble or backtracking of dye was seen. PC 12 cells delivered through the prototype catheters appeared to growth in collagen gel and differentiate into neurons in the presence of neural growth factor. Future studies with animal experiments would be needed to confirm the findings.
|
24 |
Developing Chitosan-based Biomaterials for Brain Repair and NeuroprostheticsCao, Zheng 01 May 2010 (has links)
Chitosan is widely investigated for biomedical applications due to its excellent properties, such as biocompatibility, biodegradability, bioadhesivity, antibacterial, etc. In the field of neural engineering, it has been extensively studied in forms of film and hydrogel, and has been used as scaffolds for nerve regeneration in the peripheral nervous system and spinal cord. One of the main issues in neural engineering is the incapability of neuron to attach on biomaterials. The present study, from a new aspect, aims to take advantage of the bio-adhesive property of chitosan to develop chitosan-based materials for neural engineering, specifically in the fields of brain repair and neuroprosthetics. Neuronal responses to the developed biomaterials will also be investigated and discussed.
In the first part of this study (Chapter II), chitosan was blended with a well-studied hydrogel material (agarose) to form a simply prepared hydrogel system. The stiffness of the agarose gel was maintained despite the inclusion of chitosan. The structure of the blended hydrogels was characterized by light microscopy and scanning electron microscopy. In vitro cell studies revealed the capability of chitosan to promote neuron adhesion. The concentration of chitosan in the hydrogel had great influence on neurite extension. An optimum range of chitosan concentration in agarose hydrogel, to enhance neuron attachment and neurite extension, was identified based on the results. A “steric hindrance” effect of chitosan was proposed, which explains the origin of the morphological differences of neurons in the blended gels as well as the influence of the physical environment on neuron adhesion and neurite outgrowth. This chitosan-agarose (C-A) hydrogel system and its multi-functionality allow for applications of simply prepared agarose-based hydrogels for brain tissue repair.
In the second part of this study (Chapter III), chitosan was blended with graphene to form a series of graphene-chitosan (G-C) nanocomposites for potential neural interface applications. Both substrate-supported coatings and free standing films could be prepared by air evaporation of precursor solutions. The electrical conductivity of graphene was maintained after the addition of chitosan, which is non-conductive. The surface characteristic of the films was sensitively dependent on film composition, and in turn, influenced neuron adhesion and neurite extension. Biological studies showed good cytocompatibility of graphene for both fibroblast and neuron. Good cell-substrate interactions between neurons and G-C nanocomposites were found on samples with appropriate compositions. The results suggest this unique nanocomposite system may be a promising substrate material used for the fabrication of implantable neural electrodes.
Overall, these studies confirmed the bio-adhesive property of chitosan. More importantly, the developed chitosan-based materials also have great potential in the fields of neural tissue engineering and neuroprosthetics.
|
25 |
An investigation of protective formulations containing enzyme inhibitors : Model experiments of trypsinBillinger, Erika January 2012 (has links)
This master thesis considers an investigation of protective formulations (ointment, cream) containing enzyme inhibitors. Model experiments have been made on the enzyme trypsin. It is well accepted that feces and urine are an important causing factor for skin irritation (dermatitis) while using diaper. A protective formulation is a physical barrier that separates the harmful substances from the skin. It can also be an active barrier containing active substances, which can be active both towards the skin, and the substances from feces and urine. By preventing contact from these substances the skin will not be harmed, at least for a period of time. A number of different inhibitors were tested towards trypsin and they all showed good inhibition, two of the inhibitors were selected to be immobilized with the help of NHS-activated Sepharose. Immobilization of these two inhibitors leads to a lesser extent of the risk of developing allergy and also that the possible toxic effect can be minimized.
|
26 |
Investigation Of Cell Migration And Proliferation In Agarose Based Hydrogels For Tissue Engineering ApplicationsVardar, Elif 01 July 2010 (has links) (PDF)
Hydrogels are three dimensional, insoluble, porous and crosslinked polymer networks. Due to their high water content, they have great resemblance to natural tissues, and therefore, demonstrate high biocompatibility. The porous structure provides an aqueous environment for the cells and also allows influx of nutrients needed for cellular viability. In this study, a natural biodegradable material, agarose (Aga), was used and semi-interpenetrating networks (semi-IPN) were prepared with polymers having different charges, such as positively charged chitosan (Ch) and negatively charged alginate (Alg). Hydrogels were obtained by the thermal activation of agarose with the entrapment of Ch or Alg in the Aga hydrogel structures. Chemical composition of hydrogels were determined by ATR-FTIR examinations, mechanical properties of hydrogels were examined through compression tests, morphologies were confirmed by scanning electron microscopy (SEM) and confocal microscopy, thermal properties were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover, swelling ratios, water contact angles and surface free energies (SFE) were determined. Cell proliferation and cell migration within these hydrogels were examined by using L929 fibroblast cell line. MTS assays were carried out to observe the cell proliferation on hydrogels. Confocal microscopy was used in order to examine the cell behavior such as cell attachment and cell migration towards the hydrogels. It was observed that addition of positively charged Ch into agarose increased the ultimate compressive strength (UCS), decreased elastic modulus (E), increased the thermal stability and hydrophobicity of the semi-IPN hydrogels. On the other hand, addition of negatively charged Alg into agarose decreased UCS, E, thermal stability and hydrophilicity. Cell-material interaction results showed that Aga hydrogels in tissue engineering applications was improved by adding different charged polyelectrolytes. Cell migration within Aga hydrogels was enhanced by adding Ch, and hindered by addition of Alg. Maximum cell proliferation and maximum penetration of the cells were obtained with the Ch/Aga hydrogels most probably due to attraction between the negatively charged cell surface and the positively charged Ch/Aga hydrogel surface. It was shown that cell interaction of agarose hydrogel scaffolds could be enhanced by introducing chitosan within the agarose hydrogels and obtained structures could be candidates for tissue engineering applications.
|
27 |
Developing Chitosan-based Biomaterials for Brain Repair and NeuroprostheticsCao, Zheng 01 May 2010 (has links)
Chitosan is widely investigated for biomedical applications due to its excellent properties, such as biocompatibility, biodegradability, bioadhesivity, antibacterial, etc. In the field of neural engineering, it has been extensively studied in forms of film and hydrogel, and has been used as scaffolds for nerve regeneration in the peripheral nervous system and spinal cord. One of the main issues in neural engineering is the incapability of neuron to attach on biomaterials. The present study, from a new aspect, aims to take advantage of the bio-adhesive property of chitosan to develop chitosan-based materials for neural engineering, specifically in the fields of brain repair and neuroprosthetics. Neuronal responses to the developed biomaterials will also be investigated and discussed.In the first part of this study (Chapter II), chitosan was blended with a well-studied hydrogel material (agarose) to form a simply prepared hydrogel system. The stiffness of the agarose gel was maintained despite the inclusion of chitosan. The structure of the blended hydrogels was characterized by light microscopy and scanning electron microscopy. In vitro cell studies revealed the capability of chitosan to promote neuron adhesion. The concentration of chitosan in the hydrogel had great influence on neurite extension. An optimum range of chitosan concentration in agarose hydrogel, to enhance neuron attachment and neurite extension, was identified based on the results. A “steric hindrance” effect of chitosan was proposed, which explains the origin of the morphological differences of neurons in the blended gels as well as the influence of the physical environment on neuron adhesion and neurite outgrowth. This chitosan-agarose (C-A) hydrogel system and its multi-functionality allow for applications of simply prepared agarose-based hydrogels for brain tissue repair.In the second part of this study (Chapter III), chitosan was blended with graphene to form a series of graphene-chitosan (G-C) nanocomposites for potential neural interface applications. Both substrate-supported coatings and free standing films could be prepared by air evaporation of precursor solutions. The electrical conductivity of graphene was maintained after the addition of chitosan, which is non-conductive. The surface characteristic of the films was sensitively dependent on film composition, and in turn, influenced neuron adhesion and neurite extension. Biological studies showed good cytocompatibility of graphene for both fibroblast and neuron. Good cell-substrate interactions between neurons and G-C nanocomposites were found on samples with appropriate compositions. The results suggest this unique nanocomposite system may be a promising substrate material used for the fabrication of implantable neural electrodes. Overall, these studies confirmed the bio-adhesive property of chitosan. More importantly, the developed chitosan-based materials also have great potential in the fields of neural tissue engineering and neuroprosthetics.
|
28 |
Simulating the electric field mediated motion of ions and molecules in diverse matricesHickey, Joseph 01 June 2005 (has links)
Electroporation is a methodology for the introduction of drugs and genes into cells. This technique works by reducing the exclusionary nature of the cell membrane [125, 129, 186, 189]. Electroporation has successfully been used in electrochemotherapy and electrogenetherapy [57, 68, 86, 87, 110, 112, 131]. The two major components of electroporation are an induced transmembrane potential and the motion of the deliverable through a compromised cell membrane into the target cell [38, 55, 62, 114, 131]. These two components are both dependent on the electrophoretic motion of charged species in an applied electric field [45, 64, 75, 77, 177]. Currently, the methods outlined for understanding electroporation have been focused on either a phenomenological perspective, e.g. what works, or modeling the electric fieldstrength in certain regions [12, 56, 87, 129, 146, 204, 205].
While this information is necessary for the clinician and the laboratory scientist, it doesn't expand the understanding of how electric field mediated drug and gene delivery works or EFMDGD. To increase the understanding of EFMDGD, new models are required that predict the motion of ions and deliverables through tissues to target areas [75, 77]. This document examines the design and creation of an electric field mediated drug and gene delivery model, EFMDGDM. Two example scenarios, ionic motion in tissues and gel electrophoresis, are examined in depth using the EFMDGDM. The model requires tuning for each scenario but only utilizes experimental parameters and one tunable parameter that is computed from regressed experimental data. The EFMDGDM successfully describes the two examples. Future work will incorporate the EFMDGDM as the backbone of an electric field mediated drug and gene delivery modeling package, EFMDGDMP.
|
29 |
Comparison between four commonly used methods for detection of small M-components in plasmaJonsson, Susanne January 2008 (has links)
Analysis of M-components is an important part of the diagnosis of monoclonal gammopathies and for the evaluation of disease response during treatment. In this project, two widely used electrophoresis methods and their corresponding immunotyping method were compared to evaluate the sensitivity of each method for the detection of small M-components. The project included 30 plasma samples from patients with identified M-components; 10 samples containing each IgG, IgA and IgM, respectively. All samples were diluted with normal EDTA plasma to achieve M-components of 5,00g/L. The samples were then serially diluted to achieve M-component concentrations of; 5,00, 2,50, 1,25, 0,63, 0,31 and 0,16g/L. All 180 samples were analysed with agarose gel electrophoresis and capillary electrophoresis. The dilutions above and below the detection level of each method were then analysed with immunofixation and immunosubtraction. The results showed good agreement between agarose gel electrophoresis and capillary electrophoresis in the highest concentrations of IgG and IgM. With agarose gel electrophoresis, IgA was detected in the same location as transferrin and the lowest concentration detected were therefore 1,25g/L. Besides the samples containing IgG, immunofixation was the most sensitive method.
|
30 |
Vascular Endothelial Growth Factor Functionalized Agarose Can Efficiently Guide Pluripotent Stem Cell Aggregates Toward Blood Progenitor CellsRahman, Muhammad Nafeesur 27 July 2010 (has links)
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the embryo that have great potential for regenerative therapies because of their ability to self-renew and differentiate into almost all cell types. However, this developmental potential is influenced by the local cellular microenvironment, including cell surface bound ligands. In this study, we synthesized an artificial stem cell niche wherein vascular endothelial growth factor A (VEGFA) was functionally immobilized in an agarose hydrogel. Immobilized VEGFA treatments were able to upregulate mesodermal markers, brachyury and VEGF receptor 2, by day 4 and were CD34+CD41+ by day seven. Subsequently, VEGFA immobilized treatments were able to generate colony forming cells by day fourteen. This work demonstrates our ability to use functionalized hydrogels to guide ESCs toward blood progenitor cells and serves as a useful tool to replicate aspects of the embryonic microenvironment.
|
Page generated in 0.0402 seconds