• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 14
  • 13
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 83
  • 24
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Short-range cytokine gradients to mimic paracrine cell interactions in vitro

Ansorge, Michael, Rastig, Nadine, Steinborn, Ralph, König, Tina, Baumann, Lars, Möller, Stephanie, Schnabelrauch, Matthias, Cross, Michael, Werner, Carsten, Beck-Sickinger, Annette, Pompe, Tilo 07 February 2019 (has links)
Cell fate decisions in many physiological processes, including embryogenesis, stem cell niche homeostasis and wound healing, are regulated by secretion of small signaling proteins, called cytokines, from source cells to their neighbors or into the environment. Concentration level and steepness of the resulting paracrine gradients elicit different cell responses, including proliferation, differentiation or chemotaxis. For an in-depth analysis of underlying mechanisms, in vitro models are required to mimic in vivo cytokine gradients. We set up a microparticle-based system to establish short-range cytokine gradients in a threedimensional extracellular matrix context. To provide native binding sites for cytokines, agarose microparticles were functionalized with different glycosaminoglycans (GAG). After protein was loaded onto microparticles, its slow release was quantified by confocal microscopy and fluorescence correlation spectroscopy. Besides the model protein lysozyme, SDF-1 was used as a relevant chemokine for hematopoietic stem and progenitor cell (HSPC) chemotaxis. For both proteins we found gradients ranging up to 50 µm from the microparticle surface and concentrations in the order of nM to pM in dependence on loading concentration and affinity modulation by the GAG functionalization. Directed chemotactic migration of cells from a hematopoietic cell line (FDCPmix) and primary murine HSPC (Sca-1+ CD150+ CD48-) toward the SDF-1-laden microparticles proved functional short-range gradients in a twodimensional and three-dimensional setting over time periods of many hours. The approach has the potential to be applied to other cytokines mimicking paracrine cell-cell interactions in vitro
42

Studium reaktivity huminových kyselin s využitím metody difúzních cel / Study on reactivity of humic acids via method of diffusion cells

Hrubá, Pavla January 2012 (has links)
The diploma thesis focuses on utilization of diffusion cells in reactivity mapping study on humic acids. In the experimental part, samples 6 humic acids of different origin or chemical modification were studied. All the samples were characterized by basic analytical and physico-chemical methods (elemental analysis, thermogravimetry, determination of acidity, spectrometry). Methylene blue was utilized as a model reactive probe and agarose gel as an inert support medium. An effect of interactions between humic acids and methylene blue on diffusivity of the dye in the hydrogel was determined and discussed.
43

FINITE DEFORMATION BIPHASIC MATERIAL CHARACTERIZATION AND MODELING OF AGAROSE GEL FOR FUNCTIONAL TISSUE ENGINEERING APPLICATIONS

MURALIDHARAN, PRASANNA 20 July 2006 (has links)
No description available.
44

IMMOBILIZING DNAzymes ON SURFACES FOR BIOSENSING APPLICATIONS

Esmaeili Samani, Sahar January 2019 (has links)
Pathogenic bacteria pose serious threats to public health and safety. They can cause illness, death, and substantial economic losses. The most widely used bacterial detection methods include cell culturing, antibody-based assays, and nucleic acid amplification techniques, such as polymerase chain reaction (PCR). Unfortunately, these techniques are not well suited for point-of-care application, especially in the resource-limited regions of the world, as they require highly trained personnel to perform the test, they take a long time to complete (especially culturing), and they require sophisticated lab equipment. Thus, there is a great need for simpler, faster, and more accurate methods for bacterial detection. In this thesis, we present a simple, low-cost assay for detecting pathogenic bacteria that is based on the immobilization of a bacteria-specific RNA-cleaving DNAzyme (DNAzyme) onto a surface. If the target bacteria is present, a fluorescently labelled piece of DNA (FDNA) is released through the activity of the DNAzyme; if the target bacteria is not present, the FDNA remains attached to the surface as part of the DNAzyme construct. This method allows untrained users to determine whether a target bacteria is present by simply monitoring the fluorescence intensity in the liquid phase with a hand-held fluorimeter. The first step in this work was to experimentally evaluate different surfaces (including reduced graphene oxide and different beads) onto which the DNAzyme could be immobilized. These tests determined that agarose beads, covered with streptavidin, were ideally suited for DNAzyme immobilization. Next, we conducted a comparative evaluation of the kinetics/activity of the DNAzyme that had been immobilized onto the beads and the free DNAzyme in solution; the results of this evaluation revealed virtually identical reaction rates for the two cases, suggesting no loss of activity after immobilization. Finally, we explored how the DNAzyme sequence length influenced the assay. Specifically, we analyzed a full-length DNAzyme (Full DNAzyme) sequence and a truncated alternative (Short DNAzyme) and found that the full-length construct resulted in faster signal generation. Therefore, it was determined that the long version should be used in the assays. When coupled with a filtration step, the immobilization of biotinylated DNAzymes onto the surface of streptavidin-coated agarose beads enabled the sensitive detection of E. coli in both water samples and complex matrices, such as milk and apple juice. The bead-based assay was able to produce a strong fluorescence signal readout in as little as 2.5 min following contact with E. coli, and it was capable of achieving a detection limit of 1,000 colony-forming units (CFUs) without sample enrichment. As DNAzyme probes can be generated through in vitro selection to react to different bacteria, the RNA-cleavage based detection mechanism described in this work can be adapted for the detection of a wide range of bacterial targets. Overall, this research has led to the development of a highly sensitive and easy-to-use fluorescent bacterial detection assay that is highly attractive for field applications, especially in resource-limited regions. / Thesis / Master of Applied Science (MASc)
45

Temporal and Spatial Properties of a Yeast Multi-Cellular Amplification System Based on Signal Molecule Diffusion

Jahn, Michael, Mölle, Annett, Rödel, Gerhard, Ostermann, Kai 06 February 2014 (has links) (PDF)
We report on the spatial and temporal signaling properties of a yeast pheromone-based cell communication and amplifier system. It utilizes the Saccharomyces cerevisiae mating response pathway and relies on diffusion of the pheromone α–factor as key signaling molecule between two cell types. One cell type represents the α–factor secreting sensor part and the other the reporter part emitting fluorescence upon activation. Although multi-cellular signaling systems promise higher specificity and modularity, the complex interaction of the cells makes prediction of sensor performance difficult. To test the maximum distance and response time between sensor and reporter cells, the two cell types were spatially separated in defined compartments of agarose hydrogel (5 ´ 5 mm) and reconnected by diffusion of the yeast pheromone. Different ratios of sensor to reporter cells were tested to evaluate the minimum amount of sensor cells required for signal transduction. Even the smallest ratio, one α–factor-secreting cell to twenty reporter cells, generated a distinct fluorescence signal. When using a 1:1 ratio, the secreted pheromone induced fluorescence in a distance of up to four millimeters after six hours. We conclude from both our experimental results and a mathematical diffusion model that in our approach: (1) the maximum dimension of separated compartments should not exceed five millimeters in gradient direction; and (2) the time-limiting step is not diffusion of the signaling molecule but production of the reporter protein.
46

Temporal and Spatial Properties of a Yeast Multi-Cellular Amplification System Based on Signal Molecule Diffusion

Jahn, Michael, Mölle, Annett, Rödel, Gerhard, Ostermann, Kai 06 February 2014 (has links)
We report on the spatial and temporal signaling properties of a yeast pheromone-based cell communication and amplifier system. It utilizes the Saccharomyces cerevisiae mating response pathway and relies on diffusion of the pheromone α–factor as key signaling molecule between two cell types. One cell type represents the α–factor secreting sensor part and the other the reporter part emitting fluorescence upon activation. Although multi-cellular signaling systems promise higher specificity and modularity, the complex interaction of the cells makes prediction of sensor performance difficult. To test the maximum distance and response time between sensor and reporter cells, the two cell types were spatially separated in defined compartments of agarose hydrogel (5 ´ 5 mm) and reconnected by diffusion of the yeast pheromone. Different ratios of sensor to reporter cells were tested to evaluate the minimum amount of sensor cells required for signal transduction. Even the smallest ratio, one α–factor-secreting cell to twenty reporter cells, generated a distinct fluorescence signal. When using a 1:1 ratio, the secreted pheromone induced fluorescence in a distance of up to four millimeters after six hours. We conclude from both our experimental results and a mathematical diffusion model that in our approach: (1) the maximum dimension of separated compartments should not exceed five millimeters in gradient direction; and (2) the time-limiting step is not diffusion of the signaling molecule but production of the reporter protein.
47

Desenvolvimento e avaliação de adsorventes para purificação de DNA plasmidial por meio de cromatografia baseada em ligantes de arginina. / Development and evaluation of adsorbents for the purification of plasmid DNA by chromatography based on arginine ligands.

Cardoso, Sara Isabel Borges 24 May 2018 (has links)
O uso de DNA plasmidial (pDNA) visando a aplicações terapêuticas tem aumentado nos últimos anos. A cromatografia aparece como a técnica de purificação mais comum para obtenção de amostras de pDNA com o elevado grau de pureza exigido. Porém, as resinas cromatográficas disponíveis apresentam ainda uma série de desafios, nomeadamente no desenvolvimento de ligantes específicos e matrizes capazes de acomodar este tipo de molécula. Relativamente à apuração de novos ligantes, alguns estudos têm mostrado o potencial do aminoácido arginina para estabelecer interações específicas e preferenciais com o pDNA. Por outro lado, resinas monolíticas surgem como suportes interessantes devido às suas excelentes propriedades de transferência de massa e altas capacidades de adsorção. Neste estudo, diferentes ligantes baseados em arginina (arginina, di-arginina e tri-arginina) foram imobilizados em resinas de agarose previamente ativadas. Um primeiro estudo de adsorção em batelada foi realizado a fim de avaliar e compreender os mecanismos envolvidos no processo de adsorção dos ácidos nucleicos pDNA e RNA em resina com o aminoácido arginina. Na sequência, apresentamos uma proposta inovadora para o uso de ligantes de arginina em resinas de agarose, em um único passo de purificação em modo negativo a seguir ao passo de concentração por isopropanol. A capacidade da resina para o pDNA foi substancialmente maior do que a obtida para o mesmo tipo de resina no modo positivo, com notória vantagem de capacidade no uso de di-arginina face a arginina com rendimentos próximos de 100% do plasmídeo carregado. Os ligantes di-arginina e tri-arginina foram também imobilizados em resinas monolíticas. Em comparação com o aminoácido arginina, a imobilização dos homopeptídeos nas resinas monolíticas levou ao aumento da capacidade de adsorção (cerca de 2,5 vezes superior) e especicificidade de interações, mostrando-se como uma estratégia promissora para processos de purificação de pDNA. / The use of plasmid DNA (pDNA) for therapeutic applications has increased in recent years. Chromatography appears as the most common purification technique to obtain samples of pDNA with the high degree of purity required. However, the available chromatographic resins still present a series of challenges, namely in the development of specific ligands and matrices capable of accommodating this type of molecule. Regarding the determination of new ligands, several studies have shown the potential of the arginine amino acid to establish specific and preferential interactions with the pDNA. On the other hand, monolithic resins appear as interesting approaches due to their excellent mass transfer properties and high adsorption capacities. In this study, different arginine based ligands (arginine and di-arginine) were firstly immobilized on activated agarose resins. The first part of the work describes the adsorption equilibrium of plasmid DNA adsorption process, as well as the interaction with its main impurity (RNA) on arginine supports in a batch format, in order to compare and gather crucial information about adsorption mechanisms involved in this type of affinity system. Then, a new use for chromatographic bead matrixes based on arginine ligands was proposed, working as an adsorption matrix pDNA purification in negative mode after isopropanol concentration of the sample. The arginine based supports capacity for pDNA under negative mode for pDNA was substantially higher than that obtained with the same type of resin in the conventional positive mode, with a notable advantage of using di-arginine with recovery yields near 100%. The homopeptides (di-arginine and tri-arginine) were also immobilized on functionalized monolithic resins (BIA Separations, Slovenia). Effectively, the immobilization of the arginine homopeptides made the monolithic resins more functional compared to the (mono)arginine based resin, exhibiting greater binding capacities (around 2,5 times higher) and interaction intensities, proving to be a promising strategy for purification processes of pDNA.
48

New C-C chemokine receptor type 7 antagonists

Ahmed, Mohaned S. A. January 2016 (has links)
Chemokines are chemotactic cytokines which play an important role in the migration of immune cells to distant tissues or compartments within tissues. These proteins have also been demonstrated to play a major role in cancer metastasis. The C-C chemokine receptor type 7 (CCR7) is a member of the chemokine receptor family. CCR7 along with its ligands CCL19 and CCL21 plays an important role in innate immune response by trafficking of lymphocytes. In cancer, tumour cells expressing CCR7 migrate to lymphoid organs and thus disseminate to other organs. Neutralizing the interactions between CCL21/CCR7 would therefore be expected to inhibit the progression and metastasis of many different types of cancer to regional lymph nodes or distant organs. Our objective was to identify a potent small molecule antagonist of CCR7 as a prelude to the investigation of the role of this axis in cancer metastasis. In this study, we provided a brief description of chemokines and their role in health and disease with an emphasis on the CCR7/CCL19/CCL21 axis, as well as identification of a CCR7 antagonist “hit”. The potency of the CCR7 antagonist “hit” was optimised by synthesizing different CCR7 antagonist analogues. The “hit” optimization process has led to discover the most active compound amongst a series of different analogues which have the ability to bind and block CCR7 receptor. The efficacy of the most active compound and other analogues were evaluated in vitro using a calcium flux assay which is based on detecting fluorescent light emitted upon release of calcium ions. To identify a suitable cell line, which expresses CCR7 and capably respond to it, amongst a panel of cell lines for in vitro assessment of potency of synthesised compounds, we used Western blot assay and later by flow cytometry assay. The activity and selectivity of the most effective compound against CCR7 receptor was evaluated in vitro by other functional assays such as “configured agarose spot assay” and scratch assay. We first configured the existing under agarose assay to fulfil our requirements and then used it to assess activity and selectivity of compounds. The configured agarose spot assay also describes the application of the agarose spot for evaluation of cells chemotactic response to multiple chemokines under identical experiment conditions.
49

True Monoliths as Separation Media : Homogeneous Gels for Electrophoresis and Electrochromatography in the Capillary and Microchip Modes

Végvári, Ákos January 2002 (has links)
<p>The thesis focuses on the development of new homogeneous gels for the separation of drug enantiomers, peptides, DNA and virus by electrophoresis and electrochromatography in capillaries and microchips. This type of separation media offers high resolution and small zone broadening. Compared to particulate beds the resolution in this type of separation media is high because the eddy diffusion is zero and the resistance to mass transfer is small, since the diffusional distance between two polymer chains in the gel is considerably shorter than that between two beads in a packed bed.</p><p>The gels have been characterized in terms of plate heights, plate numbers, resolution, etc. Gels of agarose, polyvinyl alcohol, albumin and polyacrylamide have been employed for electrochromatography or electrophoresis. <i>N,N’</i>-methylene-bisacrylamide, the most widely used crosslinker in polyacrylamide gels, was exchanged for allyl-β-cyclodextrin to get a multi-purpose gel, <i>i.e.,</i> a separation medium the separation properties of which is determined not only by the polyacrylamide chains, but also by β-cyclodextrin with its complexation power.</p><p>A cost-effective, hybrid microdevice has been designed for fast electrophoretic and electrochromatographic analyses as well as for microchromatography. It consists of a fused silica capillary mounted on a supporting plate which integrates most of the compartments necessary for automation and sensitive detection at short UV wavelengths.</p>
50

True Monoliths as Separation Media : Homogeneous Gels for Electrophoresis and Electrochromatography in the Capillary and Microchip Modes

Végvári, Ákos January 2002 (has links)
The thesis focuses on the development of new homogeneous gels for the separation of drug enantiomers, peptides, DNA and virus by electrophoresis and electrochromatography in capillaries and microchips. This type of separation media offers high resolution and small zone broadening. Compared to particulate beds the resolution in this type of separation media is high because the eddy diffusion is zero and the resistance to mass transfer is small, since the diffusional distance between two polymer chains in the gel is considerably shorter than that between two beads in a packed bed. The gels have been characterized in terms of plate heights, plate numbers, resolution, etc. Gels of agarose, polyvinyl alcohol, albumin and polyacrylamide have been employed for electrochromatography or electrophoresis. N,N’-methylene-bisacrylamide, the most widely used crosslinker in polyacrylamide gels, was exchanged for allyl-β-cyclodextrin to get a multi-purpose gel, i.e., a separation medium the separation properties of which is determined not only by the polyacrylamide chains, but also by β-cyclodextrin with its complexation power. A cost-effective, hybrid microdevice has been designed for fast electrophoretic and electrochromatographic analyses as well as for microchromatography. It consists of a fused silica capillary mounted on a supporting plate which integrates most of the compartments necessary for automation and sensitive detection at short UV wavelengths.

Page generated in 0.0307 seconds