• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 35
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Mechanismus der Allergen-induzierten Ausbildung von Atemwegs-Entzündung und Atemwegs-Hyperreaktivität

Hamelmann, Eckard 29 April 2003 (has links)
Erkrankungen das allergischen Formenkreises (Asthma bronchiale, Atopische Dermatitis, Allergische Rhino-Konjunktivitis) sind in ständiger Zunahme begriffen. Für den in der Klinik tätigen Pädiater stellt das allergische Asthma bronchiale die wichtigste Erkrankung aus dieser Gruppe dar. Asthma ist die häufigste chronische Atemwegs-Erkrankung im Kindesalter und verursacht durch Medikation und Hospitalisation enorme volkswirtschaftliche Kosten. Kardinale Symptome von Asthma sind reversibler Bronchospasmus nach Exposition mit z.B. Allergenen (Atemwegs-Obstruktion), eine funktionell abnorme glatte Atemwegsmuskulatur, die durch eine verstärkte Kontraktilität nach unspezifischer Stimulation gekennzeichnet ist (Bronchiale Hyperreagibilität oder Atemwegs-Hyperreaktivität, AHR), und das Vorliegen einer chronischen Entzündung der kleinen und mittleren Atemwege (Atemwegs-Inflammation, AI). Derzeitig finden für die Behandlung von Asthma bronchiale lediglich die symptomatische Therapie der Obstruktion mit muskelrelaxierenden Medikamenten (Bedarfstherapie) und die unspezifische anti-entzündliche Therapie mit steroidalen Antiphlogistika (Dauertherapie) regelmäßige und breite Anwendung. Während die Mehrzahl der Patienten hiermit relativ beschwerdefrei eingestellt werden kann, gibt es aber auch Asthmatiker, die unter den Nebenwirkungen einer hochdosierten, systemischen Steroid-Dauertherapie leiden (steroid-pflichtiges Asthma), oder trotz der intensiven Anwendung von Kortikoiden nicht symptomfrei bleiben (steroid-resistentes Asthma). Für diese Patientengruppe fehlt bislang eine effektive, nebenwirkungsarme und spezifisch anti-asthmatische Therapie. Grundlage für die Etablierung innovativer Strategien für die Behandlung von Asthma kann jedoch nur die genaue Kenntnis der pathophysiologischen Mechanismen sein, die zur Ausbildung der klinischen Symptome führen. Allergischen Erkrankungen liegt eine fehlgeleitete Immunreaktion gegen Umweltstoffe, wie z.B. Tierhaarepithelien, Blütenpollen oder Lebensmittel zugrunde. Mittlerweile gilt als gesichert, dass ein Ungleichgewicht in der Antwort von T-Lymphozyten auf diese Antigene die wesentliche Grundlage für die Ausbildung des allergischen Phänotyps darstellt. Bei allergischen Patienten überwiegt die Produktion von sog. Th2-Zytokinen. Diese sind von T-Zellen produzierte Botenstoffe, die für die Induktion und Regulierung der wesentlichen pathognomonischen Mechanismen bei der allergischen Immunreaktion verantwortlich sind. Durch Interleukin (IL)-4 und IL-13 kommt es zur gesteigerten Produktion von allergen-spezifischen IgE-Antikörpern, die Grundlage für die Aktivierung von Mastzellen und die Entwicklung der allergischen Frühreaktion (early asthmatic reaction). Durch IL-5, IL-3 und GM-CSF werden eosinophile Zellen aktiviert und wandern in die Atemwege ein. Hier entwickelt sich das Bild einer chronischen Atemwegs-Entzündung, und die Folge ist die allergische Spätreaktion (late asthmatic reaction). Der genaue Mechanismus und die Interaktion von T-Zell-Zytokinen, IgE-Produktion und eosinophiler AI ist nicht völlig geklärt und Gegenstand der vorliegenden Arbeit. Für die immunologischen Untersuchungen von AI und AHR wurde die Maus als Modell gewählt, die durch ihre gut definierte Immunologie und die Vielzahl von verfügbaren immunologischen "Werkzeugen" wie z.B. Antikörper und genetisch homogenen Stämmen entscheidende Vorteile bietet. Die in jüngerer Zeit entwickelten genetisch manipulierten Mausstämme ermöglichen darüber hinaus die genaue Analyse der Rolle einzelner Faktoren in der Pathogenese einer Erkrankung, da ihr vollständiges Fehlen (Defizienz) oder ihre Überexpression (Transgenität) direkte Rückschlüsse auf ihre Funktion erlauben. Zunächst wurden unterschiedliche Modelle der allergischen Sensibilisierung und Atemwegs-Provokation mit Allergen etabliert und miteinander verglichen. Das erste Modell, die Atemwegs-Sensibilisierung mit ausschließlicher Gabe von Allergen als Aerosol, imitiert den natürlichen Sensibilisierungsweg über die inhalative Route beim asthmatischen Patienten. Dieser Modus führt zu geringer allergen-spezifischer IgE-Produktion, einer marginalen inflammatorischen Reaktion in den Atemwegen und zu unspezifischer AHR, messbar in vitro durch elektrische Feldstimulation von trachealen Segmenten. Eine ausgeprägte inflammatorische Komponente oder die Ausbildung von in vivo AHR wie bei asthmatischen Patienten fehlen jedoch in diesem Modell. Als zweites wurde das Modell der passiven Sensibilisierung mit allergen-spezifischem IgE gefolgt von Allergen-Provokationen der Atemwege etabliert. Dieses Modell erlaubt im Gegensatz zum vorherigen die Unterscheidung des Einflusses von IgE und Allergen-Provokation der Atemwege. Auch hier entwickelt sich eine nur geringe, aber für die Ausbildung der AHR erforderliche eosinophile AI, die über die in vitro Bestimmung messbar ist. Als drittes Modell wurde die systemische Sensibilisierung mit Allergen gefolgt von Allergen-Provokationen der Atemwege etabliert. In diesem Modell kommt es zu hoher IgE-Produktion, und es herrscht eine ausgeprägte, eosinophile AI vor, die durch spezifische Immunohistochemie darstellbar und quantifizierbar ist. Für die Messung der AHR wurden zwei unterschiedliche in vivo Methoden entwickelt, die invasive Bestimmung des Atemwegswiderstandes und die Ganzkörper-Plethysmographie am nicht narkotisierten Tier. Durch den Einsatz von monoklonalen Antikörpern und genetisch alterierten Mausstämmen wurden in den drei unterschiedlichen Modellen der Einfluss und die Interaktion der wesentlichen Parameter der allergischen Immunreaktion für die Entwicklung von AI und AHR definiert. In den ersten beiden Modellen (Atemwegs- und passive Sensibilisierung) wurde anhand von T-Zell- und B-Zell-defizienten Mausstämmen und durch Einsatz von Antikörpern gegen T-Zellen oder Zytokine gezeigt, dass für die Entwicklung von eosinophiler AI die T-Zell-vermittelte Produktion von IL-5, für die Entwicklung von in vitro AHR das Zusammenspiel von allergen-spezifischer IgE-Produktion und eosinophiler AI notwendig ist. Im Modell der systemischen Sensibilisierung konnte in Mäusen, die genetisch defizient für B-Zellen oder Mastzellen oder mit anti-IgE Antikörpern behandelt waren, eine eosinophile AI und in vivo AHR wie bei normalen Tieren ausgelöst werden. Im Gegensatz hierzu kam es bei IL-4- oder IL-5-defizienten Mäusen oder nach Behandlung mit anti-IL-5 Antikörpern weder zu inflammatorischen Reaktionen noch zu funktionellen Veränderungen in den Atemwegen. Es kann hieraus gefolgert werden, dass bei allergen-induzierter AHR mit nur gering ausgeprägter AI ein gegen das erhöhte IgE gerichteter Ansatz (z.B. anti-IgE Antikörper) erfolgreich bei der Behandlung von Asthma sein kann. Bei Vorliegen von massiver AI scheint eine gegen die eosinophile Infiltration gerichtete Strategie (z.B. anti-IL-4/5 Antikörper) jedoch erfolgversprechender zu sein. / Allergic diseases such as bronchial asthma, atopic dermatitis and allergic rhino-conjunctivitis are steadily increasing. Asthma is the most common chronic airway disease in childhood, and leads to enormous socio-economic problems due to medication and hospitalisation. Cardinal symptoms of asthma are reversible bronchospasm after exposure with allergen (Airway Obstruction), a functional abnormality of the smooth muscles of the airways, that is characterized by increased contractility following unspecific stimulation (Bronchial Hyperreagibility or Airway Hyperreactivity, AHR), and the presence of a chronic inflammation in the small and middle-sized airways (Airway Inflammation, AI). Currently, treatment of asthma includes symptomatic therapy of airway obstruction with muscle relaxing medications (reliever) and unspecific anti-inflammatory therapy with cortico steroids (controller). Whereas the majority of patients lifes relatively safe and uncompromitted with this kind of treatment, a minority of asthmatic patients suffer either under the side-effects of continuous systemic high-dose steroids (steroid-dependent asthma), or stay symptomatic despite intensive treatment with steroids (steroid-resistent asthma). For this subgroup of patients, an efective, specific and safe mode of anti-asthmatic therapy is still missing. Imperative for the formulation of any innovative strategies for the treatment of asthma is the thorough knowledge of the pathophysiological mechanisms leading to the development of the disease. Allergic diseases are the consequence of aberrant immune reactions against common environmental antigens, such as pollen, food proteins or animal fur. It is commonly accepted by now that a dysregualtion of the T cell responses against these antigens are the main reason for the development of an allergic disease. In the case of allergic patients, production of so-called Th2-cytokines is increased, whereas Th1-cytokine production is relatively low. Production of the Th2-cytokines interleukin (IL)-4 and IL-13 induces increased production of allergen-specific IgE antibodies, resulting in immediate type of hypersensitivity reactions (early asthmatic reaction). Th2-cytokines IL-5, IL-3 and GM-CSF activate and recruit eosinophilic cells in the airways, leading to chronic eosinophilic airway inflammation and AHR (late asthmatic reaction). The exact mechanisms and the interaction of T cell cytokine production, IgE-production and eosinophilic AI is not fully understood and objective of the present presentation. For the immunological characterization of the basic mechanisms leading to the development of allergen-induced AI and AHR, the mouse was chosen as a model animal. Different modes of allergic sensitization and airway allergen challenge were established and compared to one another: sensitization with exclusive delivery of allergen via the airways, mimicking the natural way of sensitization and leading to moderate IgE-production, marginal AI and unspecifc AHR that is detectable in vitro by elektric field stimulation of tracheal segments; passive sensitization with allergen-specific IgE followed by allergen airway challenges, allowing the careful studies of IgE-dependent effects on AI and AHR; and systemic sensitization with allergen followed by repeated airway allergen challenges, leading to high IgE production and a profound eosinophilic AI. For detection of AHR following this mode of sensitization, two different in vivo methods were developed, invasive measurement of airway resistance and whole-body plethysmography of non-anesthesized animals. In the first two protocols (airway and passive sensitization), it was shown utilizing T-cell- and B-cell-deficient mouse strains and monoclonal antibodies against T cells or T cell cytokines, that for the development of AI and AHR the combined interaction of T-cell-mediated production of IL-5 and allergen-specific IgE-production was required. In contrast, in the mode of systemic sensitization, development of eosinophilic AI and in vivo AHR was independent of any Ig production or the presence of B cells, whereas IL-4- or IL-5-deficient mice or mice treated with anti-IL-5 antibodies prior to airway challenges did not develop any functional or structural abnormalities of the airways. In conclusion, these data show that treatment strategies aiming against increased IgE production (anti-IgE antibodies) may be effective in clinical situations with only limited airway inflammatory responses. In contrast, in patients with massive and predominant eosinophilic AI, approaches against the inflammatory component of the disease (anti-IL-4, anti-IL-5 antibodies) may be more promising for more specific treatment of bronchial asthma.
52

Functional and molecular characteristics of a helminth immunomodulator-induced suppressive macrophage population

Ziegler, Thomas 03 April 2013 (has links)
Helminthen besitzen effektive Strategien um das Immunsytem ihrer Wirte zu modulieren. Sie sekretieren Moleküle mit deren Hilfe Immunzellen unterdrückt werden und verhindern dadurch Immunantworten, die ihnen schaden. AvCystatin ist ein Cystein-Protease-Inhibitor der Filarie Acanthocheilonema viteae. Die vorliegende Arbeit zeigt, dass dieses Molekül in Makrophagen MAPK (p38, ERK) sowie Transkriptionsfaktoren (CREB, STAT3) anspricht und zur Expression von spezifischen Markergenen führt, die eine M2a/M2b Makrophagen-Aktivierung repräsentieren. Ein intravenöser Transfer solcher Zellen 18-20 Stunden nach Stimulation mit AvCystatin führte in Mäusen zu einer signifikanten Reduktion von wichtigen Merkmalen der Ovalbumin-induzierten Atemwegshyperreaktivität wie Schleimproduktion, Th2 Zytokinen, IgE und Eosinophilen. Die Linderung von Krankheitsparametern war mit einem lokalen und systemischen Anstieg von IL-10 assoziiert. Unter Verwendung eines in vitro Systems zeigte sich, dass AvCystatin induzierte Makrophagen einen löslichen Faktor sekretieren, der eine IL-10-Produktion durch CD4+ T-Zellen induziert und parallel die Produktion von IL-13, IL-2 und IFN-gamma unterdrückt. Um zu untersuchen, ob die suppressive Aktivität der AvCystatin-Makrophagen auf Entzündungsprozesse der Atemwege beschränkt ist, wurde ein Makrophagen-Transfer in Tiere durchgeführt, die unter DSS-induzierter Kolitis litten. Eine einmalige Gabe von Zellen verhinderte den Verlust von Körpergewicht, eine Verkürzung des Kolons und verminderte die Migration entzündungsvermittelnder Zellen in die Lamina Propria. Im Gegensatz zum Krankheitsmodell der Ovalbumin-induzierten Atemwegshyperaktivität korrelierten die Effekte nicht mit erhöhten Mengen an IL-10. Zusammenfassend zeigen die Ergebnisse, dass AvCystatin Makrophagen adressiert und eine immunsuppressive Population generiert, welche Mäuse im Kontext von Atemwegsentzündung und Kolitis gegen überschießende Immunantworten schützen kann. / Helminth parasites possess effective strategies to modulate the immune system of their hosts. They release molecules which target immune cells and prevent reactions directed against them. AvCystatin is a cysteine protease inhibitor secreted by the nematode Acanthocheilonema viteae. The present thesis shows that this molecule modulates signaling pathways in murine macrophages through activation of MAPK (p38, ERK) and transcription factors (CREB, STAT3). Such macrophages express specific marker genes reflecting M2a/M2b activation. A single intravenious transfer of macrophages 18-20 hours after treatment with AvCystatin significantly reduced major parameters of ovalbumin-induced airway hyperreactivity in mice such as mucus production, Th2 cytokines, IgE and recruitment of eosinophils to the airways. The amelioration of inflammation was associated with significantly increased levels of local and systemic IL-10. By using an in vitro co-culture assay AvCystatin-induced macrophages were shown to secrete a soluble factor which induces IL-10 in CD4+ T cells and in parallel to suppress production of IL-13, IL-2 and IFN-gamma. To evaluate whether the suppressive potential of AvCystatin-macrophages is restricted to airway inflammation, macrophages were administered to animals suffering from DSS-induced colitis. A single application of cells into the tail vein sufficiently prevented body weight loss, colon shortening and suppressed the influx of inflammatory cells to the lamina propria. In contrast to the model of ovalbumin-induced airway inflammation the effects were not associated with increased levels of IL-10. On the whole these findings show that the helminth immunomodulator AvCystatin targets macrophages thereby inducing a distinct immunosuppressive population which protects mice against overshooting immune responses in disease models for airway and intestinal inflammation.
53

Immunopathogenesis and antifungal therapy for severe asthma with fungal sensitization and allergic bronchopulmonary aspergillosis

Chishimba, Livingstone January 2016 (has links)
Introduction: The pathogenesis and treatment of allergic bronchopulmonary aspergillosis (ABPA), severe asthma-non fungal sensitised (SANFS) and severe asthma with fungal sensitization (SAFS) is poorly understood. IL-17A, IgE and microbiome may be associated with pathogenesis of asthma, but their role in fungal-associated asthma is uncertain. Further, the efficacy of voriconazole, posaconazole and nebulised amphotericin B (NAB) in ABPA and SAFS has not been fully studied. Aims and objectives: The aim of this PhD thesis was to evaluate the role of IL-17A, IgE and lung microbiome in patients with SANFS, SAFS and ABPA. We also studied the efficacy and safety of NAB, voriconazole and posaconazole. Methods: Airway lymphocytes and peripheral blood mononuclear cells (PBMC) from patients with ABPA (n=16), SAFS (n=15), SANFS (n=11), mild asthma (MA) (n=6) and NH (n=11) were characterized by flow cytometric analysis (FACS) to determine the % of CD (+) IL-17A expressing cells. We also evaluated microbiome population using culture and PCR plus sequencing from BAL of these patients. In chapter 3, we analysed total and specific IgE in blood from adult cohorts of SAFS (n=34) and ABPA (n=48) using ImmunoCAP 100. In chapter 5 we studied the efficacy of voriconazole and posaconazole and in chapter 6; we studied the efficacy of NAB.Results: %CD4+IL-17A expressing cells were significantly higher in patients with severe asthma and correlated positively with serum neutrophil and presence of fungi in the airways. ABPA, SAFS and SANFS were similar but all were significantly higher than MA and NH. There were no differences in IL-17A expression between blood and the lung. Fungi were more frequently associated with severe asthma and low FEV1. Steroid treatment significantly increased airway fungal load. IgE against staphylococcal aureus (SE-IgE) correlated positively with FEV1 and OCS dose. Voriconazole and posaconazole improved asthma severity and radiological abnormalities. NAB was associated bronchospasm, but was extrely effective in the few patients (n=3) that took treatment for >12 months. These responders had unique characteristics. Conclusions: IL-17A, SE-IgE, and lung microbiome are associated with asthma severity. Steroid use in these patients may increase airway fungal load. Whereas voriconazole and posaconazole are efficacious, the use of NAB is associated with significant bronchospasm. SE-IgE -high asthma patients may be a distinct asthma phenotype. Larger studies are needed.
54

Avaliação do efeito do Mycobacterium bovis BCG sobre a resposta imunológica em modelo murino de alergia pulmonar

Gouveia, Ana Cláudia Carvalho 30 August 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-05-17T14:40:56Z No. of bitstreams: 1 anaclaudiacarvalhogouveia.pdf: 2060044 bytes, checksum: a2757483182ff953fdffbf86f346380b (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-06-28T14:35:33Z (GMT) No. of bitstreams: 1 anaclaudiacarvalhogouveia.pdf: 2060044 bytes, checksum: a2757483182ff953fdffbf86f346380b (MD5) / Made available in DSpace on 2016-06-28T14:35:33Z (GMT). No. of bitstreams: 1 anaclaudiacarvalhogouveia.pdf: 2060044 bytes, checksum: a2757483182ff953fdffbf86f346380b (MD5) Previous issue date: 2012-08-30 / FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais / A asma alérgica é uma doença inflamatória crônica das vias aéreas, caracterizada por uma resposta de hipersensibilidade imediata, obstrução brônquica, inflamação pulmonar e níveis elevados de IgE. A doença é mediada principalmente por uma resposta imunológica alérgeno-específica tipo Th2. Nas últimas décadas, a prevalência da asma alérgica tem aumentado significativamente, sobretudo nos países desenvolvidos. A Hipótese da Higiene atribui este aumento a uma menor exposição a determinados microrganismos durante a infância, quando o amadurecimento adequado do sistema imunológico requer estímulos que induzam respostas imunológicas de perfil Th1, fundamentais para o equilíbrio de respostas Th2 exacerbadas. Diversos trabalhos epidemiológicos parecem comprovar esta hipótese, evidenciando a existência de uma relação inversa entre o contato com microrganismos indutores de uma resposta Th1 e o desenvolvimento de asma alérgica. Paralelamente, estudos em modelos murinos constataram que o tratamento com Mycobacterium bovis BCG (BCG) reduz respostas Th2 alérgenoespecíficas. No entanto, os mecanismos pelos quais a micobactéria inibe o desenvolvimento da resposta alérgica são ainda pouco conhecidos. Este estudo avaliou o efeito da administração do BCG sobre a resposta imunológica ocorrida na alergia pulmonar em camundongos BALB/c previamente sensibilizados e desafiados com OVA. Vinte e quatro horas após o último desafio, o sangue e o lavado broncoalveolar foram coletados para análises de imunoglobulinas e contagem de células, respectivamente. Adicionalmente, os pulmões foram submetidos à análise histológica, avaliação da atividade de EPO e dosagens de citocinas e quimiocinas, assim como avaliação da expressão de CTLA-4, Foxp3 e IL-10 por citometria de fluxo. Os resultados obtidos indicam que o tratamento com BCG melhorou o processo alérgico através da redução dos principais parâmetros relacionados à resposta Th2, como o infiltrado eosinofílico pulmonar, a atividade de EPO, IL-4, IL-13, CCL11, além de IgE e IgG1 específicas anti-OVA. Por outro lado, a administração da micobactéria aumentou os níveis de IFN-γ, IL-10 e TGF-β, além das expressões de Foxp3 e CTLA-4 pelos linfócitos T CD4+. Paralelamente, houve um aumento na produção de IL-10 pelos linfócitos T CD8+. Esses dados sugerem que, além da indução de uma resposta imune Th1, a ação imunomoduladora do BCG está relacionada também à indução de mecanismos reguladores. / Atopic asthma is a chronic respiratory disease characterized by airway hyperresponsiveness, reversible airway obstruction, lung inflammation, and high levels of allergen-specific IgE, driven by allergen-specific Th2 cells. The increasing prevalence of allergic diseases, particularly in industrialized countries, has led to the hygiene hypothesis, which states that the newborn infant’s immune system is skewed toward Th2 responses and needs timely and appropriate environmental stimulus to create a balanced immune response. Supporting this hypothesis, epidemiological and experimental evidence has shown an inverse correlation between Th1-induced microbial infections and atopic asthma. Similarly, some animal studies have demonstrated that exposure to Mycobacterium tuberculosis or to environmental mycobacteria is able to protect against the development of allergic responses. However the exact mechanism underlying this inhibition still remains poorly understood. This study aimed to evaluate the ability of BCG to suppress an established allergic response in a mouse model of OVA-induced airway inflammation. To achieve this, OVA sensitized and challenged BALB/c mice were twice treated with BCG via nasal and 21 days after the first treatment, mice were rechallenged with OVA. Twenty-four hours after the last challenge, blood samples were collected to detect anti-OVA immunoglobulin isotypes, and bronchoalveolar lavage (BAL) was harvested for cell count. Additionally, lungs were collected for histological analysis, detection of EPO activity and measurement of cytokines and chemokines. The expression of CTLA-4, Foxp3 and IL-10 was also determined in lung tissue by flow cytometry. The data indicated that BCG treatment was able to inhibit an established allergic Th2-response by decreasing the allergen-induced eosinophilic inflammation, EPO activity, levels of IL-4, IL-13, CCL11 and serum levels of IgE and IgG1. Mycobacteria treatment increased lung levels of IFN-γ, IL-10 and TGF-β, and expressions of Foxp3 and CTLA-4 in CD4+T cells. Additionally, an increased production of IL-10 by CD8+ T cells was observed, even though no detectable changes in CD4+IL-10+ was noticed. Altogether, these results suggest that the mechanism underlying the down-regulatory effects of BCG on OVA-induced airway inflammation appear to be associated with the induction of both Th1 and T regulatory immune responses.
55

The anti-inflammatory properties of intravenous immunoglobulin in a murine model of allergic airway disease ; effects on the development of regulatory T-cells

Massoud, Amir Hossein 04 1900 (has links)
Les immunoglobulines intraveineuses (IVIg) constituent une préparation polyclonale d’IgG isolée et regroupée à partir du plasma sanguin de multiples donneurs. Initialement utilisé comme traitement de remplacement chez les patients souffrant d’immunodéficience primaire ou secondaire, les IVIg sont maintenant largement utilisées dans le traitement de plusieurs conditions auto-immunes, allergiques ou inflammatoires à une dose élevée, dite immunomodulatrice. Différents mécanismes d’action ont été postulés au fil des années pour expliquer l’effet thérapeutique des IVIg dans les maladies auto-immunes et inflammatoires. Entre autre, un nombre grandissant de données issues de modèles expérimentaux chez l’animal et l’humain suggère que les IVIg induisent l’expansion et augmentent l’action suppressive des cellules T régulatrices (Tregs), par un mécanisme qui demeure encore inconnu. Également, les patients atteints de maladies auto-immunes ou inflammatoires présentent souvent un nombre abaissé de Tregs par rapport aux individus sains. Ainsi, une meilleure compréhension des mécanismes par lesquels les IVIg modulent les cellules T régulatrices est requise afin de permettre un usage plus rationnel de ce produit sanguin en tant qu’alternative thérapeutique dans le traitement des maladies auto-immunes et inflammatoires. Par le biais d’un modèle expérimental d’allergie respiratoire induite par un allergène, nous avons démontré que les IVIg diminuaient significativement l’inflammation au niveau des voies aériennes ce, en association avec une différenciation des Tregs à partir des cellules T non régulatrices du tissu pulmonaire. Nous avons également démontré qu’au sein de notre modèle expérimental, l’effet anti-inflammatoire des IVIg était dépendant des cellules dendritiques CD11c+ (CDs) pulmonaires, puisque cet effet pouvait être complètement reproduit par le transfert adoptif de CDs provenant de souris préalablement traitées par les IVIg. À cet effet, il est déjà établi que les IVIg peuvent moduler l’activation et les propriétés des CDs pour favoriser la tolérance immunitaire et que ces cellules seraient cruciales pour l’induction périphérique des Tregs. C’est pourquoi, nous avons cherché à mieux comprendre comment les IVIg exercent leur effet sur ces cellules. Pour la première fois, nous avons démontré que la fraction d’IgG riche en acide sialique (SA-IVIg) (constituant 2-5% de l’ensemble des IgG des donneurs) interagit avec un récepteur dendritique inhibiteur de type lectine C (DCIR) et active une cascade de signalement intracellulaire initiée par la phosphorylation du motif ITIM qui est responsable des changements observés en faveur de la tolérance immunitaire auprès des cellules dendritiques et des Tregs. L’activité anti-inflammatoire de la composante SA-IVIg a déjà été décrite dans des études antérieures, mais encore une fois le mécanisme par lequel ce traitement modifie la fonction des CDs n’a pas été établi. Nous avons finalement démontré que le récepteur DCIR facilite l’internalisation des molécules d’IgG liées au récepteur et que cette étape est cruciale pour permettre l’induction périphérique des Tregs. En tant que produit sanguin, les IVIg constitue un traitement précieux qui existe en quantité limitée. La caractérisation des mécanismes d’action des IVIg permettra une meilleure utilisation de ce traitement dans un vaste éventail de pathologies auto-immunes et inflammatoires. / Intravenous immunoglobulin (IVIg) is a therapeutic preparation of normal human polyclonal IgG derived from pooled plasma from a large number of healthy donors. Initially used as replacement therapy for patients with primary and secondary immune deficiencies, IVIg is now also widely used for the treatment of a variety of autoimmune, allergic and systemic inflammatory disorders, at high immunomodulatory doses. The beneficial effect of IVIg in autoimmune and inflammatory diseases has been attributed to different mechanisms. Increasing evidence shows that IVIg induces expansion and enhances the suppressive function of regulatory T cells (Tregs) in different experimental animal models and human subjects, through an unknown mechanism. Human inflammatory and autoimmune diseases are known to be associated with Treg deficiency. Therefore, a more precise understanding of the mechanisms by which IVIg modulate Treg populations seems to be needed for more rational use of this compound as an alternative therapy in context of various inflammatory and autoimmune disorders. Using a robust antigen-driven model of allergic airway disease, we have demonstrated that IVIg markedly attenuates airway inflammation and this effect is associated with the induction of Tregs from non-regulatory T cells in pulmonary tissues. We have also demonstrated that the antiinflammatory actions of IVIg, in our model are dependent on a population of pulmonary CD11c+ dendritic cells (DCs), as the action of IVIg could be completely replicated by adoptive transfer of CD11c+ DCs from IVIg-treated mice. we have shown that tolerogenic DCs involve in the peripheral induction of Tregs. Given the requirement of DCs in the induction of Tregs, we explored the mechanism by which IVIg interacts and modulate these cells and for the first time demonstrated that the purified sialylated fraction of human IgG (SA-IVIg) (that consists 2-5% of whole IgG) interacts with an inhibitory C-type lectin receptor on dendritic (DCIR) and this interaction triggers an ITIM intracellular signaling cascade. This subsequently results in rendering tolerogenic activities to DCs and peripheral induction of Tregs. The anti-inflammatory activity of SA-IVIg has been shown in previous studies, but the mechanism by which it modulates DCs functions is not well understood. We also demonstrated that DCIR facilitates the internalization of IgG molecules into DC and this internalization appears to be a crucial step for induction of Tregs. IVIg is a costly therapeutic compound. Characterization of the mechanism of action of IVIg can lead to a better application of this plasma based therapy in a wide range of autoimmune and inflammatory diseases.
56

The anti-inflammatory properties of intravenous immunoglobulin in a murine model of allergic airway disease ; effects on the development of regulatory T-cells

Massoud, Amir Hossein 04 1900 (has links)
Les immunoglobulines intraveineuses (IVIg) constituent une préparation polyclonale d’IgG isolée et regroupée à partir du plasma sanguin de multiples donneurs. Initialement utilisé comme traitement de remplacement chez les patients souffrant d’immunodéficience primaire ou secondaire, les IVIg sont maintenant largement utilisées dans le traitement de plusieurs conditions auto-immunes, allergiques ou inflammatoires à une dose élevée, dite immunomodulatrice. Différents mécanismes d’action ont été postulés au fil des années pour expliquer l’effet thérapeutique des IVIg dans les maladies auto-immunes et inflammatoires. Entre autre, un nombre grandissant de données issues de modèles expérimentaux chez l’animal et l’humain suggère que les IVIg induisent l’expansion et augmentent l’action suppressive des cellules T régulatrices (Tregs), par un mécanisme qui demeure encore inconnu. Également, les patients atteints de maladies auto-immunes ou inflammatoires présentent souvent un nombre abaissé de Tregs par rapport aux individus sains. Ainsi, une meilleure compréhension des mécanismes par lesquels les IVIg modulent les cellules T régulatrices est requise afin de permettre un usage plus rationnel de ce produit sanguin en tant qu’alternative thérapeutique dans le traitement des maladies auto-immunes et inflammatoires. Par le biais d’un modèle expérimental d’allergie respiratoire induite par un allergène, nous avons démontré que les IVIg diminuaient significativement l’inflammation au niveau des voies aériennes ce, en association avec une différenciation des Tregs à partir des cellules T non régulatrices du tissu pulmonaire. Nous avons également démontré qu’au sein de notre modèle expérimental, l’effet anti-inflammatoire des IVIg était dépendant des cellules dendritiques CD11c+ (CDs) pulmonaires, puisque cet effet pouvait être complètement reproduit par le transfert adoptif de CDs provenant de souris préalablement traitées par les IVIg. À cet effet, il est déjà établi que les IVIg peuvent moduler l’activation et les propriétés des CDs pour favoriser la tolérance immunitaire et que ces cellules seraient cruciales pour l’induction périphérique des Tregs. C’est pourquoi, nous avons cherché à mieux comprendre comment les IVIg exercent leur effet sur ces cellules. Pour la première fois, nous avons démontré que la fraction d’IgG riche en acide sialique (SA-IVIg) (constituant 2-5% de l’ensemble des IgG des donneurs) interagit avec un récepteur dendritique inhibiteur de type lectine C (DCIR) et active une cascade de signalement intracellulaire initiée par la phosphorylation du motif ITIM qui est responsable des changements observés en faveur de la tolérance immunitaire auprès des cellules dendritiques et des Tregs. L’activité anti-inflammatoire de la composante SA-IVIg a déjà été décrite dans des études antérieures, mais encore une fois le mécanisme par lequel ce traitement modifie la fonction des CDs n’a pas été établi. Nous avons finalement démontré que le récepteur DCIR facilite l’internalisation des molécules d’IgG liées au récepteur et que cette étape est cruciale pour permettre l’induction périphérique des Tregs. En tant que produit sanguin, les IVIg constitue un traitement précieux qui existe en quantité limitée. La caractérisation des mécanismes d’action des IVIg permettra une meilleure utilisation de ce traitement dans un vaste éventail de pathologies auto-immunes et inflammatoires. / Intravenous immunoglobulin (IVIg) is a therapeutic preparation of normal human polyclonal IgG derived from pooled plasma from a large number of healthy donors. Initially used as replacement therapy for patients with primary and secondary immune deficiencies, IVIg is now also widely used for the treatment of a variety of autoimmune, allergic and systemic inflammatory disorders, at high immunomodulatory doses. The beneficial effect of IVIg in autoimmune and inflammatory diseases has been attributed to different mechanisms. Increasing evidence shows that IVIg induces expansion and enhances the suppressive function of regulatory T cells (Tregs) in different experimental animal models and human subjects, through an unknown mechanism. Human inflammatory and autoimmune diseases are known to be associated with Treg deficiency. Therefore, a more precise understanding of the mechanisms by which IVIg modulate Treg populations seems to be needed for more rational use of this compound as an alternative therapy in context of various inflammatory and autoimmune disorders. Using a robust antigen-driven model of allergic airway disease, we have demonstrated that IVIg markedly attenuates airway inflammation and this effect is associated with the induction of Tregs from non-regulatory T cells in pulmonary tissues. We have also demonstrated that the antiinflammatory actions of IVIg, in our model are dependent on a population of pulmonary CD11c+ dendritic cells (DCs), as the action of IVIg could be completely replicated by adoptive transfer of CD11c+ DCs from IVIg-treated mice. we have shown that tolerogenic DCs involve in the peripheral induction of Tregs. Given the requirement of DCs in the induction of Tregs, we explored the mechanism by which IVIg interacts and modulate these cells and for the first time demonstrated that the purified sialylated fraction of human IgG (SA-IVIg) (that consists 2-5% of whole IgG) interacts with an inhibitory C-type lectin receptor on dendritic (DCIR) and this interaction triggers an ITIM intracellular signaling cascade. This subsequently results in rendering tolerogenic activities to DCs and peripheral induction of Tregs. The anti-inflammatory activity of SA-IVIg has been shown in previous studies, but the mechanism by which it modulates DCs functions is not well understood. We also demonstrated that DCIR facilitates the internalization of IgG molecules into DC and this internalization appears to be a crucial step for induction of Tregs. IVIg is a costly therapeutic compound. Characterization of the mechanism of action of IVIg can lead to a better application of this plasma based therapy in a wide range of autoimmune and inflammatory diseases.
57

PAK1's regulation of eosinophil migration and implications for asthmatic inflammation

Mwanthi, Muithi 19 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / More than 300 million people world-wide suffer from breathlessness, wheezing, chest tightness, and coughing characteristic of chronic bronchial asthma, the global incidence of which is on the rise. Allergen-sensitization and challenge elicits pulmonary expression of chemoattractants that promote a chronic eosinophil-rich infiltrate. Eosinophils are increasingly recognized as important myeloid effectors in chronic inflammation characteristic of asthma, although few eosinophil molecular signaling pathways have successfully been targeted in asthma therapy. p21 activated kinases (PAKs), members of the Ste-20 family of serine/threonine kinases, act as molecular switches in cytoskeletal-dependent processes involved in cellular motility. We hypothesized that PAK1 modulated eosinophil infiltration in an allergic airway disease (AAD) murine model. In this model, Pak1 deficient mice developed reduced inflammatory AAD responses in vivo with notable decreases in eosinophil infiltration in the lungs and broncho-alveolar lavage fluids (BALF). To test the importance of PAK1 in hematopoietic cells in AAD we used complementary bone marrow transplant experiments that demonstrated decreased eosinophil inflammation in hosts transplanted with Pak1 deficient bone marrow. In in vitro studies, we show that eotaxin-signaling through PAK1 facilitated eotaxin-mediated eosinophil migration. Ablating PAK1 expression by genetic deletion in hematopoietic progenitors or siRNA treatment in derived human eosinophils impaired eotaxin-mediated eosinophil migration, while ectopic PAK1 expression promoted this migration. Together these data suggest a key role for PAK1 in the development of atopic eosinophil inflammation and eotaxin-mediated eosinophil migration.

Page generated in 0.1068 seconds