• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 3
  • Tagged with
  • 14
  • 14
  • 13
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Des groupes aux groupoides quantiques

Vallin, Jean-Michel 14 December 2001 (has links) (PDF)
La Géométrie vue à la fin du 19eme. siècle par Félix Klein et Sophus Lie consiste à envisager l'action d'un groupe sur un espace. En termes contemporains on a ainsi un groupoïde de transformation. Une version non commutative de ce point de vue consiste à remplacer tout espace par une algèbre de fonctions sur celui ci, et considérer certaines algèbres comme celles des fonctions sur un espace quantique. <br />Ainsi toute algèbre de von Neumann peut-elle être considérée comme une "algèbre de fonctions mesurables essentiellement bornées sur un espace quantique mesuré" et toute C*-algèbre, comme une "algèbre de fonctions continues sur un espace quantique localement compact". Un groupe est un espace ayant une structure supplémentaire, l'algèbre associée est une bigèbre, plus précisément une algèbre de Hopf.<br />Ma thèse a porté sur les C*- algèbres de Hopf donc sur les groupes quantiques topologiques localement compacts. il s'agissait de transcrire aux C*-algèbres les précédants travaux sur les <br />algèbres de Hopf von Neumann. Nous avons ensuite avec Michel Enock généralisé, à ce cadre non commutatif, un théorème d'André Weil montrant que pour un groupe, la donnée d'une classe de mesures invariantes ou une topologie localement compacte et compatible sont équivalentes.<br />Dans le cas des groupes quantiques, Saad Baaj et Georges Skandalis avaient montré que l'essentiel de la structure est contenu dans un unique opérateur, appelé "unitaire multiplicatif", connu et étudié depuis des décennies dans le cas des groupes localement compacts. J'ai d'abord montré une généralisation de ce résultat au cas des groupoïdes, et dégagé un unique opérateur qui contient l'essentiel de la structure du groupoide, que j'ai appelé "unitaire pseudo-multiplicatif", et qui généralise l'unitaire multiplicatif associé aux groupes topologiques localement compacts.<br />Dans l'article suivant avec M.Enock, portant sur les inclusions de profondeur deux d'algèbres de von Neumann, nous avons mis en lumière un "unitaire pseudo-multiplicatif" plus général, qui prolonge la notion de Baaj-Skandalis, et engendre donc ce qu'on peut appeler un groupoide quantique. Il s'agissait ainsi d'appréhender ces inclusions dans les termes de la Géométrie non commutative.<br />Mes travaux actuels portent sur ces groupoïdes quantiques en dimension finie avec pour objectif, entre autres, de les caractériser en tant qu'algèbres d'opérateurs sur un espace hilbertien de dimension finie. Un premier article en ce sens a été publié, un second est en préparation.
2

Propriétés d'approximation pour les groupes quantiques discrets

Freslon, Amaury 21 November 2013 (has links) (PDF)
Cette thèse porte sur les propriétés d'approximation pour les groupes quantiques discrets et particulièrement sur la moyennabilité faible. Notre but est d'appliquer des techniques de théorie géométrique des groupes à l'étude des groupes quantiques. Nous définissons d'abord la moyennabilité faible dans le cadre des groupes quantiques discrets et nous développons une théorie générale en nous inspirant du cas classique. Nous nous attachons particulièrement à la notion de constante de Cowling-Haagerup. Nous définissons aussi une notion de moyennabilité relative qui nous permet de démontrer un résultat de stabilité supplémentaire. Un travail similaire est effectué pour la propriété de Haagerup. Enfin, nous abordons la question des produits libres de groupes quantiques faiblement moyennables. En nous inspirant des travaux de E. Ricard et X. Qu sur les inégalités de Kintchine, nous démontrons que si deux groupes quantiques discrets ont une constante de Cowling-Haagerup égale à 1, leur produit libre amalgamé sur un sous-groupe quantique fini a également une constante de Cowling-Haagerup égale à 1. Ensuite, nous donnons des exemples de groupes quantiques discrets faiblement moyennables. Nous utilisons les travaux de M. Brannan sur la propriété de Haagerup ainsi que des idées liées aux inégalités de Haagerup. Nous donnons une borne polynomiale pour la norme complètement bornée de certains projecteurs qui nous permet ensuite de "découper" les fonctions de M. Brannan pour prouver la moyennabilité faible. Enfin, nous appliquons des techniques d'équivalence monoïdale pour étendre ces résultats à d'autres classes de groupes quantiques, dont certains ne sont pas unimodulaires.
3

Analytic structures for the index theory of SL(3,C)

Yuncken, Robert 12 May 2006 (has links) (PDF)
Si G est un groupe de Lie connexe, l'anneau de représentations de Kasparov, KK^G(C,C) contient un élément particulièrement important---l'élément gamma---qui établit un lien entre l'anneau de représentations de Kasparov de G et l'anneau de représentations de son sous-groupe compacte maximal K. Dans les preuves de la conjecture de Baum-Connes avec coefficients pour les groupes G=SO(n,1) [Kasparov] et G=SU(n,1) [Julg-Kasparov], une partie fondamentale est la construction explicite de l'élément gamma comme élément de la K-homologie G-équivariante pour l'espace G/B, où B est le sous-groupe de Borel de G. Dans cette thèse, nous décrirons des constructions analytique qui peuvent être utiles pour telle construction de gamma pour le groupe de Lie de rang deux G=SL(3,C). L'inspiration est le complexe de Bernstein-Gel'fand-Gel'fand---un complexe différentiel naturel de fibrés homogènes sur G/B. Les raisons de considérer ce complexe sont expliquées en détails. Pour G=SL(3,C), l'espace G/B admet deux fibrations canoniques, qui réapparaît souvent dans l'analyse suivante. La géométrie locale de G/B se comporte comme la géométrie du groupe de Heisenberg en dimension trois, noté H. Donc, nous étudions l'algèbre d'opérateurs différentiels sur H. Nous définissons une famille à deux paramètres d'espaces de Sobolev H^(m,n)(H), en utilisant les deux fibrations de G/B. Nous introduisons les opérateurs laplaciens longitudinaux $\Delta_X$ et $\Delta_Y$. Nous montrons que ces opérateurs satisfont une condition d'ellipticité longitudinal par rapport aux espaces H^(m,n)(H) pour quelques valeurs (m,n), mais par contre nous donnons un contre-exemple à cette propriété pour un autre choix de (m,n). Ce contre-exemple est un obstacle de taille pour une approche pseudodifférentielle à l'element gamma de SL(3,C). Au lieu de cela, nous considérons l'analyse harmonique du sous-groupe compacte K=SU(3). En utilisant la théorie spectrale des opérateurs laplaciens longitudinaux K-invariants sur G/B, nous construisons une C*-catégorie $\mathcal{A}$ et des idéaux $\mathcal{K}_X$ et $\mathcal{K}_Y$ liés aux fibrations canoniques. Nous expliquons pourquoi celles-là sont les structures prometteuses pour la construction de l'élément gamma.
4

Controlled K-theory for groupoids and applications / K-théorie contrôlée pour les groupoïdes et applications

Dell'Aiera, Clément 12 July 2017 (has links)
Dans leur article de 2015 intitulé "On quantitative operator K-theory", H. Oyono-Oyono et G. Yu introduisent un raffinement de la K-théorie opératorielle adapté au cadre desC*-algèbres filtrées, appelé K-théorie quantitative ou contrôlée. Dans cette thèse, nous généralisons la notion de filtration de C_-algèbres. Nous montrons ensuite que ce cadre contient celui déjà traité par G. Yu et H. Oyono-Oyono, tout en se révélant assez souple pour traiter les produits croisés de groupoïdes étalés et de groupes quantiques discrets. Nous construisons ensuite des applications d'assemblage _a valeurs dans les groupes de K-théorie contrôlée associés, pour les C*-algèbres de Roe à coefficients et les produits croisés de groupoïdes étalés. Nous montrons que ces applications factorisent les applications d'assemblage usuelles de Baum-Connes. Nous prouvons ensuite ce que nous appelons des énoncés quantitatifs, et nous montrons qu'une version contrôlée de la conjecture de Baum-Connes est vérifiée pour une large classe de groupoïdes étalés. La fin de la thèse est consacrée à plusieurs applications de ces résultats. Nous montrons que l'application d'assemblage contrôlée coarse est équivalente à son analogue à coefficients pour le groupoïde coarse introduit par G. Skandalis, J-L. Tu et G. Yu. Nous donnons ensuite une preuve que les espaces coarses qui admettent un plongement hilbertien fibré vérifient la version maximale de la conjecture de Baum-Connes coarse contrôlée. Enfin nous étudions les groupoïdes étalés dont toutes les actions propres sont localement induites par des sous-groupoïdes compacts ouverts, dont un exemple est donné par les groupoïdes amples introduits par J. Renault. Nous développons un principe de restriction pour cette classe de groupoïdes, et prouvons que, sous des hypothèses raisonnables, leurs produits croisés vérifient la formule de Künneth en K-théorie contrôlée / In their paper entitled "On quantitative operator K-theory", H. Oyono-Oyono and G. Yu introduced a refinement of operator K-theory, called quantitative or controlled K-theory, adapted to the setting of filtered C_-algebras. In this thesis, we generalize filtration of C*-algebras. We show that this setting contains the theory developed by H. Oyono-Oyono and G. Yu, and is general enough to be applied to the setting of crossed products by étale groupoids and discrete quantum groups. We construct controlled assembly maps with values into this controlled K-groups, for Roe C*-algebras and crossed products by étale groupoids. We show that these controlled assembly maps factorize the usual Baum-Connes and coarse Baum-Connes assembly maps. We prove statements called quantitative statements, and we show that a controlled version of the Baum-Connes conjecture is satisfied for a large class of étale groupoids. The end of the thesis is devoted to several applications of these results. We show that the controlled coarse assembly map is equivalent to its analog with coefficients for the coarse groupoid introduced by G. Skandalis, J-L. Tu and G. Yu. We give a proof that coarse spaces which admit a _bred coarse embedding into Hilbert space satisfy the maximal controlled coarse Baum-Connes conjecture. Finally, we study étale groupoids whose proper actions are locally induced by compact open subgroupoids, e.g. ample groupoids introduced by J. Renault. We develop a restriction principle for these groupoids, and prove that under suitable assumptions, their crossed products satisfy the controlled Künneth formula
5

Groupes quantiques localement compacts, actions et extensions

Vaes, Stefaan 04 November 2004 (has links) (PDF)
Nous étudions les groupes quantiques dans un cadre d'algèbres d'opérateurs : les espaces quantiques sous-jacents sont des C*-algèbres ou des algèbres de von Neumann. Nous donnons des exemples comme extensions de groupes par des duaux de groupes. Ceci fournit les premiers exemples de groupes quantiques non-semi-réguliers. Nous étudions les coactions extérieures sur des facteurs et plus particulièrement sur les facteurs d'Araki-Woods libres. Nous introduisons un invariant T pour les groupes quantiques et l'utilisons pour démontrer que certains groupes quantiques ne peuvent que coagir extérieurement sur des facteurs de type III.
6

Gap-labeling des pavages de type pinwheel

Moustafa, Haïja 07 December 2009 (has links) (PDF)
Dans cette thèse, nous montrons que le groupe de K-théorie $K_0$ de la $C^*$-algèbre associée aux pavages de type pinwheel est isomorphe à la somme de $\ZZ \oplus \ZZ^6$ et d'un groupe cohomologique $H$.\\ Cette $C^*$-algèbre est de plus munie d'une trace qui induit une application linéaire sur ce groupe de $K$-théorie.\\ Nous calculons explicitement l'image, sous cette application, du sommant $\ZZ \oplus \ZZ^6$, montrant que l'image de $\ZZ$ est nulle et que l'image de $\ZZ^6$ est contenue dans le module de fréquences des patchs du pavage de type pinwheel.\\ Nous montrons également que l'on peut appliquer le théorème de l'indice mesuré dû à A. Connes pour relier l'image de $H$ à une formule cohomologique plus calculable.\\ Pour l'étude de cette partie cohomologique, nous adaptons la cohomologie PV, introduite par J. Savinien et J. Bellissard, au cas des pavages de type pinwheel pour montrer que le groupe de cohomologie de \v{C}ech de dimension maximale de ces pavages est isomorphe au groupe des coinvariants entiers de la transversale canonique associée à ces pavages.\\ Ce résultat nous permet alors de prouver la conjecture du gap-labeling fait par J. Bellissard, dans le cas particulier des pavages de type pinwheel.\\ Nous terminons cette étude par un calcul explicite, montrant que le gap-labeling (ou module de fréquences des patchs) est donné par $\frac{1}{264}\ZZ \left [ \frac{1}{5} \right ]$.
7

Algèbres planaires et sous-algèbres maximales abéliennes dans les algèbres de von Neumann

Brothier, Arnaud 28 September 2011 (has links) (PDF)
Cette thèse présente des résultats sur les algèbres planaires et les sous-algèbres maximales abéliennes dans des algèbres de von Neumann. Les deux premiers chapitres portent sur une construction qui, à une algèbre planaire d'un sous-facteur, associe un facteur II1. Dans le premier chapitre, on définit une classe d'algèbres planaires, qualifiées de non coloriées, qui est adaptée à la théorie des probabilités libres. De plus cette classe contient la classe des algèbres planaires d'un sous-facteur. On montre qu'à toute algèbre planaire non coloriée on peut associer une algèbre de von Neumann. Le résultat principal est que cette algèbre de von Neumann est un facteur II1. Dans le deuxième chapitre, on considère le facteur II1 construit à partir d'une algèbre planaire d'un sous-facteur. On considère une sous-algèbre maximale abélienne génériquement associée à l'algèbre planaire. Le résultat principal est que cette sous-algèbre maximale abélienne est maximale hyperfinie. Dans le troisième chapitre, on considère un invariant introduit par Takesaki pour des sous-algèbres maximales abéliennes. Le résultat principal est de montrer que cet invariant est obtenu par l'action du normalisateur. En particulier, on répond à une question de Takesaki en montrant que toute sous-algèbre maximale abélienne singulière est simple.
8

Groupe d'automorphismes extérieurs et catégories de bimodules de facteurs de type II_1

Falguières, Sébastien 20 June 2009 (has links) (PDF)
Dans cette thèse on montre que tout groupe compact peut être réalisé comme le groupe d'automorphismes extérieurs d'un facteur de type II_1. On montre également que la catégorie des représentations de tout groupe compact est équivalente à la catégorie des bimodules sur un facteur de type II_1. Plusieurs chapitres de cette thèse sont également consacrés à des rappels détaillés concernant la catégorie des bimodules sur un facteur de type II_1 ainsi que sur les actions minimales de groupes compacts sur des facteurs de type II_1.
9

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples

LESIEUR, Franck 14 November 2003 (has links) (PDF)
Cette thèse propose une définition des groupoïdes quantiques mesurés. L'objectif est la construction d'objets, munis d'une dualité, qui englobent à la fois les groupoïdes et les groupes quantiques. On s'appuie sur les travaux de J. Kustermans et S. Vaes concernant les groupes quantiques localement compacts qu'on généralise grâce au formalisme introduit par M. Enock et J.M. Vallin à propos des inclusions d'algèbres de von Neumann. A partir d'un bimodule de Hopf muni de poids opératoriels invariants à gauche et à droite, on définit un unitaire pseudo-multiplicatif fondamental. On introduit la notion de poids quasi-invariant sur la base et on construit une antipode avec décomposition polaire, une coinvolution, un groupe d'échelle, un module et un opérateur d'échelle. La construction du dual nécessite une hypothèse supplémentaire de densité vérifiée dans de nombreux cas. On obtient un théorème de bidualité dans le cas où la base est semifinie. Cette théorie est illustrée par différents exemples.
10

Estimation de normes dans les espaces Lp non commutatifs et applications

Arhancet, Cédric 25 November 2011 (has links) (PDF)
Cette thèse présente quelques résultats d'analyse sur les espaces Lp le plus souvent non commutatifs.La première partie exhibe de large classes de contractions sur des espaces Lp non commutatifsqui vérifient l'analogue non commutatif de la conjecture de Matsaev. De plus, cette partie fournitune comparaison entre certaines normes apparaissant naturellement dans ce domaine. La deuxièmepartie traite des fonctions carrées. Le premier résultat principal énonce que si T est un opérateurR-Ritt sur un espace Lp alors les fonctions carrées associées sont équivalentes. Le second résultatprincipal est une caractérisation de certaines estimations carrées utilisant les dilatations. La troisièmepartie de cette thèse introduit de nouvelles fonctions carrées pour les opérateurs de Ritt définis surdes espaces Lp non commutatifs. Le résultat principal est qu'en général ces fonctions carrées ne sontpas équivalentes. Cette partie contient aussi un résultat d'équivalence entre la norme usuelle et unecertaine fonction carrée. La quatrième partie introduit un analogue non commutatif de l'algèbre deFigà-Talamanca-Herz Ap(G) sur le prédual naturel de l'espace d'opérateurs Mp,cb des multiplicateursde Schur complètement bornées sur l'espace de Schatten Sp.

Page generated in 0.0871 seconds