• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 573
  • 244
  • 58
  • 55
  • 16
  • 16
  • 16
  • 16
  • 16
  • 15
  • 11
  • 10
  • 8
  • 8
  • 7
  • Tagged with
  • 1169
  • 257
  • 253
  • 237
  • 192
  • 161
  • 148
  • 114
  • 109
  • 105
  • 94
  • 88
  • 88
  • 84
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
701

Commutants of composition operators on the Hardy space of the disk

Carter, James Michael 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The main part of this thesis, Chapter 4, contains results on the commutant of a semigroup of operators defined on the Hardy Space of the disk where the operators have hyperbolic non-automorphic symbols. In particular, we show in Chapter 5 that the commutant of the semigroup of operators is in one-to-one correspondence with a Banach algebra of bounded analytic functions on an open half-plane. This algebra of functions is a subalgebra of the standard Newton space. Chapter 4 extends previous work done on maps with interior fixed point to the case of the symbol of the composition operator having a boundary fixed point.
702

Restrictions to Invariant Subspaces of Composition Operators on the Hardy Space of the Disk

Thompson, Derek Allen 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Invariant subspaces are a natural topic in linear algebra and operator theory. In some rare cases, the restrictions of operators to different invariant subspaces are unitarily equivalent, such as certain restrictions of the unilateral shift on the Hardy space of the disk. A composition operator with symbol fixing 0 has a nested sequence of invariant subspaces, and if the symbol is linear fractional and extremally noncompact, the restrictions to these subspaces all have the same norm and spectrum. Despite this evidence, we will use semigroup techniques to show many cases where the restrictions are still not unitarily equivalent.
703

Varieties and Clones of Relational Structures

Grabowski, Jens-Uwe 07 June 2002 (has links)
We present an axiomatization of relational varieties, i.e., classes of relational structures closed under formation of products and retracts, by a certain class of first-order sentences. We apply this result to categorically equivalent algebras and primal algebras. We consider the relational varieties generated by structures with minimal clone, rigid structures and two-element structures.
704

Quantum Systems and their Classical Limit A C*- Algebraic Approach

Van De Ven, Christiaan Jozef Farielda 14 December 2021 (has links)
In this thesis we develop a mathematically rigorous framework of the so-called ''classical limit'' of quantum systems and their semi-classical properties. Our methods are based on the theory of strict, also called C*- algebraic deformation quantization. Since this C*-algebraic approach encapsulates both quantum as classical theory in one single framework, it provides, in particular, an excellent setting for studying natural emergent phenomena like spontaneous symmetry breaking (SSB) and phase transitions typically showing up in the classical limit of quantum theories. To this end, several techniques from functional analysis and operator algebras have been exploited and specialised to the context of Schrödinger operators and quantum spin systems. Their semi-classical properties including the possible occurrence of SSB have been investigated and illustrated with various physical models. Furthermore, it has been shown that the application of perturbation theory sheds new light on symmetry breaking in Nature, i.e. in real, hence finite materials. A large number of physically relevant results have been obtained and presented by means of diverse research papers.
705

Mixed Witt rings of algebras with involution

Garrel, Nicolas 04 April 2024 (has links)
Although there is no natural internal product for hermitian forms over an algebra with involution of the first kind, we describe how tomultiply two ε-hermitian forms to obtain a quadratic form over the base field. This allows to define a commutative graded ring structure by taking together bilinear forms and ε-hermitian forms, which we call the mixedWitt ring of an algebra with involution. We also describe a less powerful version of this construction for unitary involutions, which still defines a ring, but with a grading over Z instead of the Klein group. We first describe a general framework for defining graded rings out of monoidal functors from monoidal categories with strong symmetry properties to categories of modules. We then give a description of such a strongly symmetric category Brₕ(K, ι) which encodes the usual hermitian Morita theory of algebras with involutions over a field K. We can therefore apply the general framework to Brₕ(K, ι) and theWitt group functors to define our mixed Witt rings, and derive their basic properties, including explicit formulas for products of diagonal forms in terms of involution trace forms, explicit computations for the case of quaternion algebras, and reciprocity formulas relative to scalar extensions. We intend to describe in future articles further properties of those rings, such as a λ-ring structure, and relations with theMilnor conjecture and the theory of signatures of hermitian forms.
706

Continuity of Drazin and generalized Drazin inversion in Banach algebras

Benjamin, Ronalda Abigail Marsha 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / Please refer to full text to view abstract.
707

Strings, Gravitons, and Effective Field Theories

Buchberger, Igor January 2016 (has links)
This thesis concerns a range of aspects of theoretical physics. It is composed of two parts. In the first part we motivate our line of research, and introduce and discuss the relevant concepts. In the second part, four research papers are collected. The first paper deals with a possible extension of general relativity, namely the recently discovered classically consistent bimetric theory. In this paper we study the behavior of perturbations of the metric(s) around cosmologically viable background solutions. In the second paper, we explore possibilities for particle physics with low-scale supersymmetry. In particular we consider the addition of supersymmetric higher-dimensional operators to the minimal supersymmetric standard model, and study collider phenomenology in this class of models. The third paper deals with a possible extension of the notion of Lie algebras within category theory. Considering Lie algebras as objects in additive symmetric ribbon categories we define the proper Killing form morphism and explore its role towards a structure theory of Lie algebras in this setting. Finally, the last paper is concerned with the computation of string amplitudes in four dimensional models with reduced supersymmetry. In particular, we develop general techniques to compute amplitudes involving gauge bosons and gravitons and explicitly compute the corresponding three- and four-point functions. On the one hand, these results can be used to extract important pieces of the effective actions that string theory dictates, on the other they can be used as a tool to compute the corresponding field theory amplitudes. / Over the last twenty years there have been spectacular observations and experimental achievements in fundamental physics. Nevertheless all the physical phenomena observed so far can still be explained in terms of two old models, namely the Standard Model of particle physics and the ΛCDM cosmological model. These models are based on profoundly different theories, quantum field theory and the general theory of relativity. There are many reasons to believe that the SM and the ΛCDM are effective models, that is they are valid at the energy scales probed so far but need to be extended and generalized to account of phenomena at higher energies. There are several proposals to extend these models and one promising theory that unifies all the fundamental interactions of nature: string theory. With the research documented in this thesis we contribute with four tiny drops to the filling of the fundamental physics research pot. When the pot will be saturated, the next fundamental discovery will take place.
708

Operators on Banach spaces of Bourgain-Delbaen type

Tarbard, Matthew January 2013 (has links)
The research in this thesis was initially motivated by an outstanding problem posed by Argyros and Haydon. They used a generalised version of the Bourgain-Delbaen construction to construct a Banach space $XK$ for which the only bounded linear operators on $XK$ are compact perturbations of (scalar multiples of) the identity; we say that a space with this property has very few operators. The space $XK$ possesses a number of additional interesting properties, most notably, it has $ell_1$ dual. Since $ell_1$ possesses the Schur property, weakly compact and norm compact operators on $XK$ coincide. Combined with the other properties of the Argyros-Haydon space, it is tempting to conjecture that such a space must necessarily have very few operators. Curiously however, the proof that $XK$ has very few operators made no use of the Schur property of $ell_1$. We therefore arrive at the following question (originally posed in cite{AH}): must a HI, $mathcal{L}_{infty}$, $ell_1$ predual with few operators (every operator is a strictly singular perturbation of $lambda I$) necessarily have very few operators? We begin by giving a detailed exposition of the original Bourgain-Delbaen construction and the generalised construction due to Argyros and Haydon. We show how these two constructions are related, and as a corollary, are able to prove that there exists some $delta > 0$ and an uncountable set of isometries on the original Bourgain-Delbaen spaces which are pairwise distance $delta$ apart. We subsequently extend these ideas to obtain our main results. We construct new Banach spaces of Bourgain-Delbaen type, all of which have $ell_1$ dual. The first class of spaces are HI and possess few, but not very few operators. We thus have a negative solution to the Argyros-Haydon question. We remark that all these spaces have finite dimensional Calkin algebra, and we investigate the corollaries of this result. We also construct a space with $ell_1$ Calkin algebra and show that whilst this space is still of Bourgain-Delbaen type with $ell_1$ dual, it behaves somewhat differently to the first class of spaces. Finally, we briefly consider shift-invariant $ell_1$ preduals, and hint at how one might use the Bourgain-Delbaen construction to produce new, exotic examples.
709

On towers of function fields over finite fields

Lotter, Ernest Christiaan 03 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007. / Explicit towers of algebraic function fields over finite fields are studied by considering their ramification behaviour and complete splitting. While the majority of towers in the literature are recursively defined by a single defining equation in variable separated form at each step, we consider towers which may have different defining equations at each step and with arbitrary defining polynomials. The ramification and completely splitting loci are analysed by directed graphs with irreducible polynomials as vertices. Algorithms are exhibited to construct these graphs in the case of n-step and -finite towers. These techniques are applied to find new tamely ramified n-step towers for 1 n 3. Various new tame towers are found, including a family of towers of cubic extensions for which numerical evidence suggests that it is asymptotically optimal over the finite field with p2 elements for each prime p 5. Families of wildly ramified Artin-Schreier towers over small finite fields which are candidates to be asymptotically good are also considered using our method.
710

Nonexistence of Rational Points on Certain Varieties

Nguyen, Dong Quan Ngoc January 2012 (has links)
In this thesis, we study the Hasse principle for curves and K3 surfaces. We give several sufficient conditions under which the Brauer-Manin obstruction is the only obstruction to the Hasse principle for curves and K3 surfaces. Using these sufficient conditions, we construct several infinite families of curves and K3 surfaces such that these families are counterexamples to the Hasse principle that are explained by the Brauer-Manin obstruction.

Page generated in 0.032 seconds