• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 40
  • 17
  • 15
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 284
  • 88
  • 61
  • 54
  • 41
  • 40
  • 35
  • 31
  • 21
  • 21
  • 21
  • 20
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Impact of Secondary Interactions in Asymmetric Catalysis

Frölander, Anders January 2007 (has links)
This thesis deals with secondary interactions in asymmetric catalysis and their impact on the outcome of catalytic reactions. The first part revolves around the metal-catalyzed asymmetric allylic alkylation reaction and how interactions within the catalyst affect the stereochemistry. An OH–Pd hydrogen bond in Pd(0)–π-olefin complexes of hydroxy-containing oxazoline ligands was identified by density functional theory computations and helped to rationalize the contrasting results obtained employing hydroxy- and methoxy-containing ligands in the catalytic reaction. This type of hydrogen bond was further studied in phenanthroline metal complexes. As expected for a hydrogen bond, the strength of the bond was found to increase with increased electron density at the metal and with increased acidity of the hydroxy protons. The second part deals with the use of hydroxy- and methoxy-containing phosphinooxazoline ligands in the rhodium- and iridium-catalyzed asymmetric hydrosilylation reaction. The enantioselectivities obtained were profoundly enhanced upon the addition of silver salts. This phenomenon was explained by an oxygen–metal coordination in the catalytic complexes, which was confirmed by NMR studies of an iridium complex. Interestingly, the rhodium and iridium catalysts nearly serve as pseudo-enantiomers giving products with different absolute configurations. The final part deals with ditopic pyridinobisoxazoline ligands and the application of their metal complexes in asymmetric cyanation reactions. Upon complexation, these ligands provide catalysts with both Lewis acidic and Lewis basic sites, capable of activating both the substrate and the cyanation reagent. Lanthanide and aluminum complexes of these ligands were found to catalyze the addition of the fairly unreactive cyanation reagents ethyl cyanoformate and acetyl cyanide to benzaldehyde, whereas complexes of ligands lacking the Lewis basic coordination sites failed to do so. / QC 20100709
242

Chiral Bisphosphinites For Asymmetric Catalysis

Sharma, Rakesh Kumar 01 1900 (has links)
Chiral bisphosphinites are well-documented alternatives for chiral bisphosphines as ligands that can be exploited in various asymmpetric syntheses. Particularly, vicinal biarylphophinite ligands give a seven membered chelate ring similar to the successful DIOP on coordination to the metal. RajanBabu and coworkers have described asymmetric bisphosphinites obtained by functionalization of sugars and have shown their utility in enantioselective hydrogenation, hydrovinylation and hydrocynation reactions. Despite the interesting reactions demonstrated by bisphosphinites, not much attention has been paid to their synthesis and catalysis. This is probably due to the known moisture and oxygen sensitivity that makes their use limited. In the present thesis, a series of C1 an C2 symmetric bisphosphinite complexes of Pd(II) and Pt(II) have been synthesized directly from various naturally occurring chiral alcohols using a modified template method. A number of asymmetric catalytic reactions have been developed such as allylation of imines, allylation of aldehydes, allylic allylation, allylic alkylation, hydrosilylation of alkenes and regioselective allylation of oxiranes. Allylation of imines was carried out in essentially neutral conditions using Pd(II) catalysts and water was shown to accelerate the reaction. Interestingly acetic acid was required as a promoter in asymmetric allylation of cinnamaldehyde in the Pt(II) catalyzed reaction whereas water was a deterrent. Hydrosilylation reaction was carried out in solvent free conditions with high turnover numbers (.1000). Ascorbic acid based complexes produced the highest enantioselectivity for the asymmetric allylic alkylation reaction (97 % ee) and hydrosilylation of styrene (98% ee). These enantioselectivity results are the best obtained using ligands directly prepared from natural products.
243

Chiral Pyridine-Containing Ligands for Asymmetric Catalysis. Synthesis and Applications

Rahm, Fredrik January 2003 (has links)
<p>This thesis deals with the design and syntheses of chiral,enantiopure pyridinecontaining ligands and their applicationsin asymmetric catalyis.</p><p>Chiral pyridyl pyrrolidine ligands and pyridyl oxazolineligands were synthesized and employed in thepalladium-catalysed allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate. Theinfluence of the steric properties of the ligands wereinvestigated.</p><p>Ditopic ligands, containing crown ether units as structuralelements, were synthesized and some of the ligands were used asligands in the palladiumcatalysed allylic alkylation of1,3-diphenyl-2-propenyl acetate with dimethyl malonate. A smallrate enhancement was observed, compared with analogous ligandslacking the crown ether unit, when these ditopic ligands wereused in dilute systems.</p><p>A modular approach was used to synthesize chiralenantiomerically pure pyridyl alcohols and C2-symmetric2,2’-bipyridines, with the chirality originating from thechiral pool. Electronic and steric properties of the compoundswere varied and they were used as ligands in theenantioselective addition of diethylzinc to benzaldehyde. Thesense of asymmetric induction was found to be determined by theabsolute configuration of the carbinol carbon atom. Theelectronic properties of the ligands had a minor influence onthe levels of enantioselectivity induced by the ligands.</p><p>Chiral pyridyl phosphinite ligands and pyridyl phosphiteligands were synthesized from the pyridyl alcohols andevaluated as ligands in palladiumcatalysed allylic alkylations.With the phosphinite ligands, the sense of chiral induction wasfound to be determined by the absolute configuration of theformer carbinol carbon atom. A kinetic resolution of theracemic starting material was observed with one of thephosphite ligands. Moderate enantioselectivities wereachieved.</p><p><b>Kewords:</b>asymmetric catalysis, chiral ligand, chiralpool, oxazoline, crownether, ditopic receptor, bipyridine,pyridyl alcohol, modular approach, P,Nligand, diethylzinc,allylic alkylation.</p>
244

Rutheniumkatalysierte Addition von nicht aktivierten C(sp²)–H- und C(sp³)–H-Bindungen an Alkene / Ruthenium-catalyzed addition of unactivated C(sp²)–H and C(sp³)–H bonds to alkenes

Schinkel, Marvin 19 April 2013 (has links)
No description available.
245

Vers la synthèse de C-glycosyl aminoxy peptides et d'oligomères de nucléosides aminoxy acides

Peyrat, Sandrine 13 December 2011 (has links) (PDF)
Récemment, de nombreux efforts ont été consacrés au développement d'oligonucléotides synthétiques pour des applications thérapeutiques et de diagnostique variées. Les oligonucléotides modifiés peuvent inhiber sélectivement l'expression des gènes en se liant spécifiquement à des séquences d'ADN et/ou d'ARN ciblées à travers les stratégies antigène, antisens ou d'ARN interférent. Les aminoxy peptides forment facilement des structures secondaires bien définies comme des alpha-, béta-, gamma-turns ou des hélices, ce qui nous a inspiré pour concevoir de nouveaux oligonucléotides modifiés dans le but d'étudier leurs propriétés physico-chimiques et biologiques. Au cours de ce travail, la synthèse de nucléosides aminoxy acides et de leurs oligomères a été entreprise en séries ribose et désoxyribose. Dans la première partie, les fonctions aminoxyle, acide carboxylique et aldéhyde ont été introduites sur la partie osidique de la thymidine. Différents nucléosides monofonctionnalisés ont été synthétisés à l'aide notamment des réactions de Mitsunobu, d'O-allylation et d'oxydation. Les nucléosides monomères ont ensuite été couplés entre eux conduisant aux nouveaux dinucléosides liés par liaison N-oxy amide, oxime et aminoxy. Dans la seconde partie, la synthèse de différentes uridines aminoxy acides a été étudiée à partir de l'uridine, des 2,2'-anhydro et 2,3'-anhydro uridines. Une uridine aminoxy ester a pu être obtenue en passant par la 3'-oxo uridine via une homologation (réaction de Wittig) et l'introduction de la fonction oxyamine en position 5' par une substitution nucléophile du dérivé iodé. En parallèle, dans la continuité des travaux réalisés au laboratoire sur la synthèse des glycoamino acides, nous avons synthétisé des C-glycosyl aminoxy acides jamais décrits dans la littérature, dans le but de générer de nouveaux mimes de glycopeptides. A partir du C-allyl glucopyranoside perbenzylé, deux C-glucosyl aminoxy acides diastéréoisomères ont été préparés.
246

N-alquilação regiosseletiva de pirazóis empregando 4-alcóxi(amino)-5-bromo-1,1,1-trifluorpent-3-en-2-onas / Regioselective N-alkylation of pyrazoles using 4-alkoxy(amino)-5-bromo-1,1,1-trifluoropent-3-en-2-ones"

Moraes, Paulo Alexandre de 19 August 2016 (has links)
This work presents the synthesis of three new series of nitrogen-heterocycles containing the substituent trifluoromethyl, exploiting the synthetic versatility and regioselectivity of 4-alkoxy-5-bromo-1,1,1-trifluorpent-3-en-2-ones and 4-amino-5-bromo-1,1,1-trifluoropent-3-en-2-ones in reactions with compounds containing nucleophilic nitrogen. Two series of 1-(3-alkoxy-5-trifluoromethyl-2,3-dihydrofuran-3-yl)-4,5-alkyl-3-(trifluoromethyl)-1H-pyrazoles were synthesized by the N-functionalization reaction of pyrazoles with 4-alkoxy-5-bromo-1,1,1-trifluorpent-3-en-2-ones, by Michael s nucleophilic addition. In the first step, there is a nucleophilic addition of the pyrazol molecule to the beta position of enones (Cβ), followed by an intramolecular cyclization reaction, where the furan ring is formed by replacement of the bromine atom by the carbonyl oxygen of enone, resulting in thirteen novel compounds with yields between 55-86%. The other compounds series, (E)-4-(amino)-1,1,1-trifluoro-5-(5-methyl-3- (trifluoromethyl)-1H-pyrazol-1-yl)pent-3-en-2-ones, was synthesized by N-alkylation reaction, through a bimolecular nucleophilic substitution (SN2) mechanism, with replament of the bromine atom, at five position (Cγ) of 4-amino-5-bromo-1,1,1-trifluoropent-3-en-2-ones, by the nucleophilic nitrogen of the pyrazoline ring. Seven N-alkylated products were obtained, with yields among 65-85%. In addition, the regioselectivity study of N-functionalized pyrazoles reactions is described, including the evaluation of reaction conditions and how substituents present in the pyrazole structure can influence the product formation, because many different steric and electronic factors. The obtained compounds were characterized by nuclear magnetic resonance 1H and 13C, mass spectrometry, elementary analysis and X-ray diffractometry. / A presente dissertação relata a síntese de três séries inéditas de heterociclos nitrogenados trifluormetil substituídos, que exploram a versatilidade sintética e a regiosseletividade das 4-alcóxi-5-bromo-1,1,1-trifluorpent-3-en-2-onas e das 4-amino-5-bromo-1,1,1-trifluorpent-3-en-2-onas, em reações com nucleófilos nitrogenados. As primeiras duas séries dos compostos 1-(3-alcóxi-5-trifluorometil-2,3-diidrofuran-3-il)-4,5-alquil-3-(trifluorometil)-1H-pirazóis, foram sintetizadas através do processo de N-funcionalização de pirazóis, a partir da reação com as 4-alcóxi-5-bromo-1,1,1-trifluorpent-3-en-2-onas, cujo o caminho mecanístico se deu através de uma reação de adição nucleofílica de Michael. Inicialmente, ocorre a adição do pirazol nucleofílico na posição beta (Cβ) das enonas bromadas, seguida de uma reação de ciclocondensação intramolecular formando o anel furano, com a substituição átomo de bromo pelo oxigênio enólico, resultando na formação de treze compostos inéditos, com rendimentos entre 55 e 86%. Outra série de compostos (E)-4-(amino)1,1,1-triflúor-5-(5-metil-3-(trifluormetil)-1H-pirazóis-1-il)pent-3-en-2-onas, foi sintetizada através da reação de N-alquilacão, via substituição nucleofílica bimolecular (SN2), onde o átomo de bromo na posição cinco (Cγ), das 4-amino-5-bromo-1,1,1-trifluorpent-3-en-2-onas, foi substituído pelo nitrogênio nucleofílico do anel pirazolínico, promovendo a formação de sete produtos N-alquilados, com rendimentos que variam entre 65 e 85%. Além disso, um estudo de regiosseletividade das reações N-funcionalizadas de pirazóis está descrito, onde a avaliação das condições reacionais e também de fatores estéricos e eletrônicos dos substituintes presentes nos substratos, foram determinantes para formação do produto formado. Os produtos obtidos neste trabalho foram caracterizados por ressonância magnética nuclear de 1H e 13C, espectrometria de massas de baixa e alta resolução, análise elementar e difratometria de Raio X.
247

Organocatalytic Cascade Cyclizations for the Enantioselective Synthesis of Spirooxindoles

Kayal, Satavisha January 2016 (has links) (PDF)
The thesis entitled “Organocatalytic Cascade Cyclizations for the Enantioselective Synthesis of Spirooxindoles” is divided into three chapters. Chapter 1: Catalytic Enantioselective Michael Addition/Cyclization Cascade of 3-Isothiocyanato Oxindoles with Nitroolefins A myriad of spirocyclic frameworks present in natural product, and pharmaceutically important compounds, has attracted the synthetic organic chemists to explore their preparation in enantioselective manner. Consequently various strategies have been devised for efficiently accessing highly functionalized spirooxindoles. Among these strategies, the use of 3-isothiocyanato oxindoles as the building block appeared as the most popular one. The combination of 3-isothiocyanato oxindoles and a variety of electrophiles have already been reported. However one of the most popular electrophiles, nitroolefins, has never been used in the reaction with 3-isothiocyanato oxindoles. In this chapter, a highly efficient catalytic asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and β-substituted nitroolefins with the help of a cinchonidine-derived bifunctional thiourea catalyst has been discussed. Highly functionalized spirooxindoles containing three successive stereocenters were obtained in high yield with moderate to good diastereo- and enantioselectivity. Reference: Kayal, S.; Mukherjee, S. Eur. J. Org. Chem. 2014, 6696-6700. Chapter 2: Catalytic Aldol-Cyclization Cascade of 3-Isothiocyanato Oxindoles with α-Ketophosphonates for the Enantioselective Synthesis of β-Amino-α-Hydroxyphosphonates The oxindole scaffold containing a quaternary stereocenter at the C3 position is a privileged structural motif present in many biologically active molecules and natural products. In this respect, spirooxindoles have received special attention during the past few years. Similarly, β-Amino and/or hydroxy functionalized phosphonic acids and their derivatives are found to display inhibitory activities towards a range of enzymes such as renin, HIV protease, thrombin, and various classes of protein tyrosine kinases and phosphatases. Considering the importance of both oxindole and β-amino-α-hydroxyphosphonic acid, we reasoned that highly functionalized phosphonic acid derivatives based on a spirooxindole framework could be of potential biological significance, if synthesized in enantiopure form This chapter deals with a cascade aldol-cyclization reaction between 3-isothiocyanato oxindoles and α-ketophosphonates for the enantioselective synthesis of spirooxindole-based β-amino-α-hydroxyphosphonate derivatives. Catalyzed by cinchona alkaloid-based bifunctional thiourea derivatives, this protocol delivers 2-thioxooxazolidinyl phosphonates bearing two adjacent quaternary stereogenic centers, generally in high yields with excellent diastereo- and enantioselectivities. Both the product enantiomers are accessible with nearly equally high level of enantioselectivity. Reference: Kayal, S.; Mukherjee, S. Org. Lett. 2015, 17, 5508-5511. Chapter 3: Catalytic Michael Addition/Cyclization Cascade of 3-Isothiocyanato Oxindoles with Cyclic α,β-Unsaturated Ketones: A Concise Enantioselective Synthesis of Bispiro[indoline-3,2'-pyrrolidine] Among different spirocyclic cores, the spirooxindole framework containing pyrrolidinyl ring represents a very important class owing to their biological activities such as antimicrobial, anticancer, antihypertensive, antidiabetic, antimycobacterial and antitubercular properties. Similarly, the bispirooxindole scaffold recently has drawn considerable interests because of its exclusive structural and stereochemical diversity. Only a few examples have been reported till date for enantioselective construction of the pharmaceutically important bispirooxindole architectures. Considering the importance of bispirooxindoles and pyrrolidinyl spirooxindole scaffolds, we were interested in merging them in a single molecular framework. In this chapter, a Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and exocyclic enones for the enantioselective synthesis of 3,2′-pyrrolidinyl bispirooxindole derivatives has been illustrated. With the help of a quinine-derived bifunctional squaramide as the catalyst, this protocol delivers bispirooxindoles bearing three contiguous stereogenic centers, in high yields and generally with outstanding diastereo- and enantioselectivity. Reference: Kayal, S.; Mukherjee, S. manuscript under preparation.
248

Total Synthesis of Bio-Active Macrolide Natural Products and Sulfinamide Based Ligands in Asymmetric Catalysis

Revu, Omkar January 2015 (has links) (PDF)
The thesis entitled “Total synthesis of bio-active macrolide natural products and sulphonamide based ligands in asymmetric catalysis” is divided into two chapters. First chapter of the thesis describes the total synthesis of bio-active macrolide natural products cladospolide A 1, seimatopolide A 2 and synthetic studies towards aetheramides A 3 and B 4 (Figure 1). Figure 1: Bio-active macrolide natural products. Section A of chapter 1 describes the enantiospecific total synthesis of cladospolide A (ent-1). Cladospolide A was isolated from three different sources such as culture filtrate of cladosporium fulvam FI-113, Fungus cladosporium tenuissimum and Fermentation broath of cladosporium sp. FT-0012. Cladospolide A is shown to inhibit the root growth of lettuce seedlings. Enantiospecific total synthesis of cladospolide A ent-1 was accomplished in 9% overall yield in 11 linear steps using D-ribose as a chiral pool precursor. Key reactions in the present approach include olefin cross metathesis and Yamaguchi macrolactonization reactions (Scheme 1). Scheme 1: Total synthesis of cladospolide A (ent-1). Section B of chapter 1 describes the use of furan as a surrogate for the E-but-2-ene-1, 4-dione unit in the total synthesis of seimatopolide A 2. Seimatopolide A 2 was isolated by Heip and co-workers from the fungus Seimatosporium discosioides in 2012 and is shown to activate the γ-subtype peroxysome proliferator-activated receptors (PPAR-γ), which is a pivotal process in the type-2 diabetes. Total synthesis of ent-seimatopolide A was accomplished in 7.8% overall yield in 14 linear steps from furfural. Nagao acetate aldol and Shiina macrolactonization reactions were employed as key reactions for the synthesis of ent-seimatopolide A (ent-2) (Scheme 2). Scheme 2: Stereoselective total synthesis of seimatopolide A (ent-2). In section C of Chapter 1, studies towards the synthesis of aetheramides A 3 and B 4 are described. Aetheramides A 3 and B 4 are isolated by Müller’s group in 2012 from the novel myxobacterial genus “Aetherobacter”. Aetheramides are cyclic depsipeptides, which are shown to inhibit the HIV-I infection with IC50 values of ∼0.015 μM and cytostatic activity against human colon carcinoma (HCT-116) cells with IC50 values of 0.11 μM. Stereochemistry at two chiral centers present in the molecules is unassigned. The first approach (Scheme 3) relied on macrolactonization as the key step while the second approach (Scheme 4) relied on RCM to accomplish the macrolactonization. The required precursors were synthesized from elaboration of chiral furyl carbinol, while synthesis of the RCM precursor was accomplished employing the aldol reaction. Scheme 3: Macrolactonization strategy for synthesis of 3 from chiral furyl carbinol. Scheme 4: RCM strategy for synthesis of 3 from chiral furyl carbinol. The successful synthesis of the macrolactone core of aetheramide A 1 is accomplished by employing the ring closing metathesis reaction to construct the C18-C19 bond. RCM precursor has been synthesized by the amidation of the amine derived from R-mandelic acid, while the acid fragment is synthesized from allyl trityl ether (Scheme 5). Scheme 5: RCM strategy for synthesis of 3 from R-mandelic acid. Second chapter of the thesis describes the synthesis and application of novel sulfinamide ligands in asymmetric catalysis. In section A of chapter 2, chiral 2-pyridylsulfinamides are shown to be effective catalysts in the alkylation of aryl and alkyl aldehydes with diethylzinc providing the corresponding alcohols in excellent enantioselectivity. It was found that the chirality present at sulfur in the ligand is pivotal for the asymmetric induction (Scheme 6). Scheme 6: Asymmetric alkylation of benzaldehyde with some of the 2-Pyridyl sulfinamide catalysts. Second section of chapter 2 describes the synthesis and application of C2-symmetric bis-sulfinamides in Rh (I) catalyzed conjugate addition of PhB(OH)2 to enones. Chirality present at sulphur in sulfonamide as well as symmetry present in the ligand plays crucial role in the outcome of the reaction (Scheme 7). Scheme 7: Asymmetric arylation of enones using C2-symmetric bis-sulfinamide/olefin ligands. The thesis entitled “Total synthesis of bio-active macrolide natural products and sulphonamide based ligands in asymmetric catalysis” is divided into two chapters. First chapter of the thesis describes the total synthesis of bio-active macrolide natural products cladospolide A 1, seimatopolide A 2 and synthetic studies towards aetheramides A 3 and B 4 (Figure 1). Figure 1: Bio-active macrolide natural products. Section A of chapter 1 describes the enantiospecific total synthesis of cladospolide A (ent-1). Cladospolide A was isolated from three different sources such as culture filtrate of cladosporium fulvam FI-113, Fungus cladosporium tenuissimum and Fermentation broath of cladosporium sp. FT-0012. Cladospolide A is shown to inhibit the root growth of lettuce seedlings. Enantiospecific total synthesis of cladospolide A ent-1 was accomplished in 9% overall yield in 11 linear steps using D-ribose as a chiral pool precursor. Key reactions in the present approach include olefin cross metathesis and Yamaguchi macrolactonization reactions (Scheme 1). Scheme 1: Total synthesis of cladospolide A (ent-1). Section B of chapter 1 describes the use of furan as a surrogate for the E-but-2-ene-1, 4-dione unit in the total synthesis of seimatopolide A 2. Seimatopolide A 2 was isolated by Heip and co-workers from the fungus Seimatosporium discosioides in 2012 and is shown to activate the γ-subtype peroxysome proliferator-activated receptors (PPAR-γ), which is a pivotal process in the type-2 diabetes. Total synthesis of ent-seimatopolide A was accomplished in 7.8% overall yield in 14 linear steps from furfural. Nagao acetate aldol and Shiina macrolactonization reactions were employed as key reactions for the synthesis of ent-seimatopolide A (ent-2) (Scheme 2). Scheme 2: Stereoselective total synthesis of seimatopolide A (ent-2). In section C of Chapter 1, studies towards the synthesis of aetheramides A 3 and B 4 are described. Aetheramides A 3 and B 4 are isolated by Müller’s group in 2012 from the novel myxobacterial genus “Aetherobacter”. Aetheramides are cyclic depsipeptides, which are shown to inhibit the HIV-I infection with IC50 values of ∼0.015 μM and cytostatic activity against human colon carcinoma (HCT-116) cells with IC50 values of 0.11 μM. Stereochemistry at two chiral centers present in the molecules is unassigned. The first approach (Scheme 3) relied on macrolactonization as the key step while the second approach (Scheme 4) relied on RCM to accomplish the macrolactonization. The required precursors were synthesized from elaboration of chiral furyl carbinol, while synthesis of the RCM precursor was accomplished employing the aldol reaction. Scheme 3: Macrolactonization strategy for synthesis of 3 from chiral furyl carbinol. Scheme 4: RCM strategy for synthesis of 3 from chiral furyl carbinol. The successful synthesis of the macrolactone core of aetheramide A 1 is accomplished by employing the ring closing metathesis reaction to construct the C18-C19 bond. RCM precursor has been synthesized by the amidation of the amine derived from R-mandelic acid, while the acid fragment is synthesized from allyl trityl ether (Scheme 5). Scheme 5: RCM strategy for synthesis of 3 from R-mandelic acid. Second chapter of the thesis describes the synthesis and application of novel sulfinamide ligands in asymmetric catalysis. In section A of chapter 2, chiral 2-pyridylsulfinamides are shown to be effective catalysts in the alkylation of aryl and alkyl aldehydes with diethylzinc providing the corresponding alcohols in excellent enantioselectivity. It was found that the chirality present at sulfur in the ligand is pivotal for the asymmetric induction (Scheme 6). Scheme 6: Asymmetric alkylation of benzaldehyde with some of the 2-Pyridyl sulfinamide catalysts. Second section of chapter 2 describes the synthesis and application of C2-symmetric bis-sulfinamides in Rh (I) catalyzed conjugate addition of PhB(OH)2 to enones. Chirality present at sulphur in sulfonamide as well as symmetry present in the ligand plays crucial role in the outcome of the reaction (Scheme 7). Scheme 7: Asymmetric arylation of enones using C2-symmetric bis-sulfinamide/olefin ligands.
249

Supported metal catalysts for friedel-crafts alkylation

Hlatywayo, Tapiwa January 2013 (has links)
Doctor Educationis / The research focused on the synthesis, characterisation and activity of zeolite supported metal catalysts for the Friedel-Crafts alkylation of benzene with t-butyl chloride. Alkyl benzenes are traditionally produced via systems that employ the use of Lewis acids or strong mineral acids. There have been widespread concerns over these approaches based on their environmental impacts and separation difficulties. Recent approaches have endeavoured the much to use more environmentally eco-friendly systems and zeolites have proved to be versatile support materials. The use of zeolites has also shown to greatly improve product selectivity as well as easing separation constraints. However the adoption of zeolites on large scale Friedel-Crafts alkylation has been hampered by the high cost of zeolite production from commercial sources. On the other hand fly ash has been found to be a viable starting material for zeolite synthesis. Apart from that South Africa is faced with fly disposal challenges and there is continual accumulation of fly ash at the coal fired power stations, which provide about 77 % of the power produced in the country. In this light the use of fly ash will help to reduce the disposal constraints as well as providing a cheap starting material for zeolite synthesis. In this study the hierarchical Zeolite X has been successfully synthesised from fly ash via a hydrothermal treatment. The zeolite was then loaded with Fe/Mn via two approaches namely liquid phase ion exchange and incipient wetness impregnation. For comparison purposes seasoned commercial support materials namely HBEA and MCM- 41 were also loaded with the same metals and characterised with various techniques namely; HRSEM, EDS, HRTEM, XRD, SAED, ICP-OES and N2 adsorption analysis, It was found from the characterisation undertaken that the integrity of the respective supports was generally retained upon metal loading. Both the ICP-OES and the EDS proved that the desired metals were successfully introduced onto the zeolitic support materials. The calculated percentage metal loading for the catalysts prepared via incipient wetness impregnation was closely related to the actual values obtained from the ICP-OES analysis for both the monometallic and the bimetallic catalysts (Fe/Mn). It was observed that the amount of metal that can be introduced on a zeolite via liquid phase ion exchange is largely dependent on the cation exchange capacity of the zeolite Supported metal catalysts for FC alkylation Page v and of the catalysts prepared using 0.25 M Fe solution it was found that Zeolite X had the highest Fe wt% loading of 11.4 %, with the lowest loading of 2.2 % obtained with the MCM-41 supported catalyst. The XRD patterns for the both HBEA and the MCM-41 supported metal catalysts resembled the patterns of the respective prestine support materials except in the case of catalysts with anFe wt % of more than 10, which exhibited peaks due to the Fe2O3 crystallites. In the case of the hierarchical Zeolite X, the metal loaded support had a significant reduction in the XRD peak intensities. The prepared catalysts were tested for the alkylation of benzene with t-butyl chloride. The benzene was also used as the solvent. The alkylation reaction was carried out in a round bottomed flask under reflux conditions and stirring at a temperature of 45 oC over a period of 5 h. A total of 18 catalysts was tested and the highest percentage conversion of 100 % was obtained with the 10%FeH after a reaction time of 2 h. The general trend obtained with the majority of the catalysts was characterised with a rapid initial increase and then steady state was achieved. Generally after a reaction time of 3 h almost all the catalysts had reached steady state in terms of the percentage conversion obtained. The outcomes reflect that the inclusion of Mn does not enhance the conversion but rather decreases it. It was also found that the Mn was not active in the alkylation of benzene as shown by the inactivity of the 10%MnM, where 10% by weight Mn was loaded on MCM-41. However the other monometallic catalysts containing Mn supported on Zeolite X and HBEA were found to be active. The activity is attributed to the presence of Brønsted acid sites in these zeolites which are not present in MCM-41. The selectivity studies reflect that the inclusion of Mn does slightly improve the selectivity towards the formation of the monoalkylated product (t-butyl benzene). The highest selectivity of 91.1 % was obtained with the 10%FeMnM after a reaction time of 4 h. MCM-41 supported catalysts had a relatively higher selectivity compared to the other supports. Considering the Fe monometallic catalysts tested it generally can be said that the yield were in the order HBEA > MCM-41 > Zeolite X. It however should be noted that the percentage yield is calculated from the conversion and selectivity percentages, this implies that the factors affecting these parameters will consequently affect the percentage yield obtained. Supported metal catalysts for FC alkylation Page vi The alkylation reaction was found to be characterised by the formation of two intermediate products which could not be identified. These products were formed during the transient start up stages of the reaction and would disappear from the reaction mixture with longer reaction times, and after 3 h in almost all the reactions studied the intermediates were not detected in the reaction mixture. The main products found were the monoalkylated product (desired product) and the para isomer (1,4-t-di-butyl benzene). There were no other dialkylated isomers or trialkylated products detected. The formation of the para isomer was usually after a reaction time of 2 h in most reactions. The research managed to show that the hierarchical Zeolites X can be synthesised from fly ash and ion exchange and incipient wetness impregnation are appropriate approaches that can be used to introduce Fe/Mn onto the support materials studied. The catalysts prepared were active to varying degrees in the Friedel-Crafts alkylation of benzene with t-butylchloride, with the exception of the 10%MnM which was found to be inactive.
250

Stereochemical And Synthetic Investigations

Venu, Lingampally 11 1900 (has links) (PDF)
PART I RESOLUTION AND DESYMMETRISATION Chapter I. ‘A Novel Racemate Resolution’. This describes a novel resolution strategy as applied to racemic α-amino acids in the solid state. The strategy is based on the possibility that second order asymmetric transformations (SOAT) would be more likely in the case of achiral molecules that form chiral crystals (i.e. a non- centrosymmetric space group).1 In such cases, a fundamental requirement of SOAT – that the molecules racemise in solution prior to crystallization – is obviated. Furthermore, the resulting enantiomerically-enriched crystals may be employed to effect a solid-state kinetic resolution of a different racemate (composed of chiral molecules). This strategy was explored with crystalline succinic anhydride (1, Scheme 1), which not only exists in a non-centrosymmetric space group (P212121) but also possesses reactive functionality to effect the resolution step.2 Thus, a finely-ground mixture of 1 (0.5 eqiv.) and a racemic α-amino acid (2, 1.0 eqiv.) was heated at ~ 70 oC over ~ 5 h without solvent. The resulting N-succinoyl derivative (3) was separated from the unreacted 2, which was found to possess significant levels of optical purity (typically ~ 70%). The strategy was applied to several common α-amino acids, the results being summarized in Table 1. These results, apart from establishing ‘proof-of-concept’ and the viability of the resolution strategy, indicate that crystalline succinic anhydride (1) is enantiomerically enriched as originally hypothesized. Chapter II. ‘Enantiospecific Alkylation and Desymmetrisations’. This deals with two enolate-mediated strategies of asymmetric synthesis: one describes approaches towards the alkylation of the stereogenic centre in benzoin without loss of stereogenicity (Section A), and the other the desymmetrisation of a meso tartarate derivative with a chiral base catalyst (Section B). Section A. This describes exploratory studies aimed at achieving the enantiospecific α-alkylation of optically-active benzoin (4, Scheme 2) via its enolate anion 5. The strategy depends on the possibility that 5 would exist in atropisomeric forms, because of steric interactions between the vicinal phenyl groups. (This is indicated in the crystal structure of the analogous enediol carbonate derived from racemic 4.)3 In such a case, remarkably, 5 would be chiral, despite its planar enediolate core! Thus, possibly, the configurational chirality in 4 (by virtue of the C2 stereogenic centre) would be transformed to the helical chirality in 5 (by virtue of the atropisomerism). Furthermore, enantioface-selective alkylation of 5 with achiral alkylating agents would, in principle, be possible. Preliminary studies were then directed towards establishing that controlled deprotonation of optically-active 4, followed by the protonation of the resulting enediolate 5, leads back to the original 4. (+)-Benzoin (4) was prepared via resolution,4 and deprotonated with KH in THF.5 The resulting enediolate (5) was neutralized with acetic acid at -70 oC/THF to recover 4, but with insignificant levels of optical activity (e.e. ~ 12%). The results possibly indicate that ortho-substituted benzoin analogs may show greater retention of chirality upon deprotonation, as the racemisation of the enediolate atropisomers would be suppressed by steric hindrance between the aryl moities. Section B. This describes studies directed towards the catalytic desymmetrisation of meso dimethyl tartarate (6, Scheme 3). The strategy involves the formation of the acetonide derivative 7 and its regioselective α-deprotonation with a chiral base catalyst. The enantioface-selective protonation of the resulting enolate (8) would lead to the chiral analog 9. The overall sequence offers a possible alternative to catalytic deracemisation, which is normally unviable for thermodynamic reasons.6 The above strategy hinges on the meso derivative 7 being thermodynamically less stable than the enantiomeric 9, which would thus be favoured at equilibrium. In fact, this is likely as the eclipsing interactions between the syn ester moieties in 7 would be relieved in 9, in which the ester moieties are anti. However, deprotonation of 7 at the other α position would compete to varying extents, depending on the selectivity induced by the chiral base. At total equilibrium, the sequence would occur via deprotonation at both α sites at equal rates, and no net optical induction would be observed. (This is a thermodynamic requirement via the principle of microscopic reversibility.) Thus, the success of the above strategy depends on stalling the deprotonation-protonation sequence at a quasi-equilibrium stage involving only one of the enantiomers (9).6 The other operational requirement was the compatibility of the pKa’s of 7 and the chiral base employed: too low a pKa of the base would result in inefficient deprotonation and slow overall rate, but a high pKa would generate a large quantity of the enolate 8 at equilibrium. After due consideration, the lithiated chiral fluorene derivative 11 (pKa ~ 22) was chosen as the chiral base catalyst [11 was prepared from fluorene (10) as indicated]. Treating 7 with 0.2 equivalent of 10 in THF at -65 oC over 2 h, led to the formation of a mixture of 7 and 9 in a 45:55 ratio (isolated in 85% total yield). Chromatographic separation of the mixture led to the isolation of pure (+)-9, which was identified spectrally; it was found to possess [α]D24 = +21.84 (c 1.0, CHCl3), corresponding to e.e. = 64%. (This implies the indicated (4S, 5S) configuration for 1, 3-dioxolane 9, as previously reported.)7 These results, despite the moderate e.e. levels obtained, indicate the viability of the above catalytic desymmetrisation strategy, bearing in mind the mechanistic ambiguities mentioned above. PART II SYNTHESES OF ALDEHYDES AND AMINO ACIDS Chapter III. ‘An Asymmetric Synthesis of Aldehydes’. This describes an oxazoline approach to the synthesis of chiral aldehydes. The oxazoline methodology for the synthesis of homochiral α-alkylated carboxylic acids is well known,8 and it was of interest to adapt this to the synthesis of the corresponding aldehydes. Essentially, it was envisaged that the reaction sequence could be diverted towards aldehydes via reduction of the alkylated oxazoline intermediate (Scheme 4). Thus, 2-ethyl-4(S)-methoxymethyl-5(R)-phenyl-1,3-oxazoline (12) was deprotonated with lithium diisopropylamide in THF, and the resulting anion treated with various alkyl halides, in the reported manner.8 The resulting alkylated product (13) was N-methylated with MeI in refluxing MeNO2 over 6 h, to obtain the quaternary salt 14. This was reduced with NaBH4 in MeOH to obtain the expected N- methyl oxazolidine 15, which was hydrolyzed in refluxing aqueous oxalic acid to the free aldehydes 16. These were isolated in moderate yields and e.e. values as shown. Chapter IV. ‘A Darzens Route to α-Amino Acids’. This describes a novel route to α-amino acids, based on the classical Darzens glycidic ester synthesis.9 In this approach (Scheme 5), the glycidic ester (19) was prepared from benzaldehyde (17) and t-butyl bromoformate (18), with KOH in THF as base, and tetrabutylammonium bromide (TBAB) as phase transfer catalyst.9b The oxirane ring in 19 was cleaved via nucleophilic attack with an amine (20), to furnish the two regio-isomeric hydroxy- amino acids (21) and (22). Generally, the β-hydroxy-α-amino acid product (21) predominated over the α-hydroxy-β-amino acid product (22), the two being separated chromatographically. The hydroxyl group in 21 was reductively cleaved via its xanthate derivative (23), by refluxing it in toluene with AIBN (10 mol %) over 4 h. The resulting α-amino acid derivatives (24) were obtained in moderate yields (< 60 %) upon chromatographic purification. (The β-amino analog 22, would lead to the corresponding β-amino acid, but this was not pursued further.) This strategy lends itself to creating structural diversity at the β-centre in the α- amino acid, drawing upon the wide scope of the well-established Darzens condensation reaction. Also, the introduction of the amino moiety is facilitated by the enhanced reactivity at the α-centre of the oxirane ring in the glycidic ester (19), presumably for both electronic and steric reasons.

Page generated in 0.4212 seconds