• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Manipulating proglucagon processing in the pancreatic alpha-cell for the treatment of diabetes

Wideman, Rhonda D. 05 1900 (has links)
Glucagon-like peptide-1 (GLP-1) has received much attention as a novel diabetes therapeutic due to its pleotropic blood glucose-lowering effects, including enhancement of glucose-stimulated insulin secretion, inhibition of gastric emptying and glucagon secretion, and promotion of beta-cell survival and proliferation. GLP-1 is produced in the intestinal L-cell via processing of the proglucagon precursor by prohormone convertase (PC) 1/3. Proglucagon is also expressed in the pancreatic alpha-cell; however, in this tissue PC2 is typically expressed instead of PC1/3, resulting in differential cleavage of proglucagon to yield glucagon as the major product. We hypothesized that expression of PC1/3 in the alpha-cell would induce GLP-1 production in this tissue, and that this intervention would improve islet function and survival. Initial studies in alpha-cell lines demonstrate that adenoviral delivery of PC1/3 to alpha-cells increases GLP-1 production. By encapsulating and transplanting either PC1/3- or PC2-expressing alpha-cells, the following studies show that while PC2-expressing alpha-cells increase fasting blood glucose and impair glucose tolerance, PC1/3-expressing alpha-cells decrease fasting blood glucose and dramatically improve glucose tolerance in normal mice and in mouse models of diabetes. We further show that transplantation of PC1/3-expressing alpha-cells prevents streptozotocin (STZ)- induced hyperglycemia. We also found that PC1/3-expressing alpha-cells also improve cold-induced thermogenesis in db/db mice, demonstrating a previously unappreciated effect of one or more of the PC1/3-derived proglucagon products. Studies in isolated mouse islets demonstrate that adenoviral delivery of PC1/3 to isolated islets increases islet GLP-1 secretion and improves glucose-stimulated insulin secretion and islet survival. Experiments with diabetic mice show that these GLP-1-producing islets are better able to restore normoglycemia in recipient mice following islet transplantation. Taken together, these studies demonstrate that the alpha-cell can be induced to process proglucagon into PC1/3-derived products, and that this shift redirects the alpha-cell from a hyperglycemia-promoting fate to a blood glucose-lowering one. This research opens up avenues for further investigating the therapeutic potential of inducing islet GLP-1 production in isolated human islets and in vivo in diabetes patients, and may represent a novel way to intervene in the progressive loss of beta-cells that characterizes diabetes.
2

Manipulating proglucagon processing in the pancreatic alpha-cell for the treatment of diabetes

Wideman, Rhonda D. 05 1900 (has links)
Glucagon-like peptide-1 (GLP-1) has received much attention as a novel diabetes therapeutic due to its pleotropic blood glucose-lowering effects, including enhancement of glucose-stimulated insulin secretion, inhibition of gastric emptying and glucagon secretion, and promotion of beta-cell survival and proliferation. GLP-1 is produced in the intestinal L-cell via processing of the proglucagon precursor by prohormone convertase (PC) 1/3. Proglucagon is also expressed in the pancreatic alpha-cell; however, in this tissue PC2 is typically expressed instead of PC1/3, resulting in differential cleavage of proglucagon to yield glucagon as the major product. We hypothesized that expression of PC1/3 in the alpha-cell would induce GLP-1 production in this tissue, and that this intervention would improve islet function and survival. Initial studies in alpha-cell lines demonstrate that adenoviral delivery of PC1/3 to alpha-cells increases GLP-1 production. By encapsulating and transplanting either PC1/3- or PC2-expressing alpha-cells, the following studies show that while PC2-expressing alpha-cells increase fasting blood glucose and impair glucose tolerance, PC1/3-expressing alpha-cells decrease fasting blood glucose and dramatically improve glucose tolerance in normal mice and in mouse models of diabetes. We further show that transplantation of PC1/3-expressing alpha-cells prevents streptozotocin (STZ)- induced hyperglycemia. We also found that PC1/3-expressing alpha-cells also improve cold-induced thermogenesis in db/db mice, demonstrating a previously unappreciated effect of one or more of the PC1/3-derived proglucagon products. Studies in isolated mouse islets demonstrate that adenoviral delivery of PC1/3 to isolated islets increases islet GLP-1 secretion and improves glucose-stimulated insulin secretion and islet survival. Experiments with diabetic mice show that these GLP-1-producing islets are better able to restore normoglycemia in recipient mice following islet transplantation. Taken together, these studies demonstrate that the alpha-cell can be induced to process proglucagon into PC1/3-derived products, and that this shift redirects the alpha-cell from a hyperglycemia-promoting fate to a blood glucose-lowering one. This research opens up avenues for further investigating the therapeutic potential of inducing islet GLP-1 production in isolated human islets and in vivo in diabetes patients, and may represent a novel way to intervene in the progressive loss of beta-cells that characterizes diabetes.
3

Manipulating proglucagon processing in the pancreatic alpha-cell for the treatment of diabetes

Wideman, Rhonda D. 05 1900 (has links)
Glucagon-like peptide-1 (GLP-1) has received much attention as a novel diabetes therapeutic due to its pleotropic blood glucose-lowering effects, including enhancement of glucose-stimulated insulin secretion, inhibition of gastric emptying and glucagon secretion, and promotion of beta-cell survival and proliferation. GLP-1 is produced in the intestinal L-cell via processing of the proglucagon precursor by prohormone convertase (PC) 1/3. Proglucagon is also expressed in the pancreatic alpha-cell; however, in this tissue PC2 is typically expressed instead of PC1/3, resulting in differential cleavage of proglucagon to yield glucagon as the major product. We hypothesized that expression of PC1/3 in the alpha-cell would induce GLP-1 production in this tissue, and that this intervention would improve islet function and survival. Initial studies in alpha-cell lines demonstrate that adenoviral delivery of PC1/3 to alpha-cells increases GLP-1 production. By encapsulating and transplanting either PC1/3- or PC2-expressing alpha-cells, the following studies show that while PC2-expressing alpha-cells increase fasting blood glucose and impair glucose tolerance, PC1/3-expressing alpha-cells decrease fasting blood glucose and dramatically improve glucose tolerance in normal mice and in mouse models of diabetes. We further show that transplantation of PC1/3-expressing alpha-cells prevents streptozotocin (STZ)- induced hyperglycemia. We also found that PC1/3-expressing alpha-cells also improve cold-induced thermogenesis in db/db mice, demonstrating a previously unappreciated effect of one or more of the PC1/3-derived proglucagon products. Studies in isolated mouse islets demonstrate that adenoviral delivery of PC1/3 to isolated islets increases islet GLP-1 secretion and improves glucose-stimulated insulin secretion and islet survival. Experiments with diabetic mice show that these GLP-1-producing islets are better able to restore normoglycemia in recipient mice following islet transplantation. Taken together, these studies demonstrate that the alpha-cell can be induced to process proglucagon into PC1/3-derived products, and that this shift redirects the alpha-cell from a hyperglycemia-promoting fate to a blood glucose-lowering one. This research opens up avenues for further investigating the therapeutic potential of inducing islet GLP-1 production in isolated human islets and in vivo in diabetes patients, and may represent a novel way to intervene in the progressive loss of beta-cells that characterizes diabetes. / Medicine, Faculty of / Cellular and Physiological Sciences, Department of / Graduate
4

Microencapsulation of Pancreatic Islets : A Non-Vascularised Transplantation Model

Bohman, Sara January 2008 (has links)
Transplantation of pancreatic islets is a potential treatment of type 1 diabetes that aims to restore normal blood glucose control. By encapsulating the islets in alginate, they can be protected from rejection. The aim of this thesis was to study the biology of encapsulated islets and to use the technique of microencapsulation to study the effect of transplantation in a system that is separated from direct contact with the vascular system and the host tissue at the transplantation site. Encapsulated islets can effectively reverse hyperglycaemia after transplantation into the peritoneal cavity of diabetic mice. A period of culture before encapsulation and transplantation did not affect their insulin release or curative capability. Pre-culture with exendin-4 improved insulin secretion, but not to the extent that the long term outcome in our transplantation model was improved. Despite being able to reach and retain normoglycaemia, microencapsulated islets transplanted intraperitoneally decreased in size. More specifically the number of beta cells in each individual islet was decreased. However, in contrast to previous studies using non-encapsulated islets, the alpha cell number was maintained, and thus the capsule seems to protect these peripherally located and otherwise exposed cells. As the capsule also prevents revascularisation of the islets, the model was used to study the importance of vascular supply for islet amyloid formation. Islet amyloid is a possible reason for the long-term failure of transplanted islets. It is likely that their low vascular density causes a disturbed local clearance of IAPP and insulin that starts the aggregation of IAPP. Indeed, encapsulated islets had an accelerated amyloid formation compared to normal islets, and might serve as a model for further studies of this process. In conclusion, although revascularisation is not a prerequisite for islet graft function, it plays an important role for islet transplantation outcome.
5

Analyse des animaux transgéniques exprimant conditionnellement Pax4 dans les cellules alpha pancréatiques / Analysis of transgenic animals conditionally misexpressing Pax4 in pancreatic alpha-cells

Pfeifer, Anja 10 December 2013 (has links)
Dans ce travail, nous démontrons que l’expression ectopique de Pax4 dans les cellules glucagon+ adultes induit, indépendamment de l’âge, leur néogenèse et transformation en cellules «bêta-like», ce qui entraîne une hypertrophie des îlots et une néogenèse inattendue des îlots. Par l’utilisation de plusieurs approches de traçage, nous démontrons que la conversion des cellules alpha en cellules «bêta-like» médiée par l’expression de Pax4, induit également la mobilisation de précurseurs situés dans ou à proximité des canaux pancréatiques. Ces cellules ré-expriment le gène développemental Ngn3 et adoptent successivement une identité de cellules glucagon+ puis de cellules «bêta-like», suggérant le réveil des mécanismes embryonnaires. Il et à noter que ces processus sont capables de régénérer la totalité de la masse de cellules bêta après plusieurs séries d’induction chimique du diabète. Ces résultats offrent ainsi des perspectives prometteuses pour concevoir de nouvelles stratégies thérapeutiques et régénératrices dans le contexte du diabète du type I. Dans un deuxième chapitre, ce travail décrit nos résultats d'analyse par puce à ADN de pancréas transgénique d’animaux exprimant conditionnellement le gène Pax4 dans les cellules alpha adultes. Cette approche nous permis d'identifier de potentiels gènes cibles de Pax4, qui pourraient jouer un rôle important dans les processus de régénération de la masse de cellules bêta. L’analyse de la fonction de l’un de ces gènes, le facteur de croissance indépendante 1 (Gfi1) est décrite. / In this work we demonstrate that the inducible misexpression of Pax4 in glucagon+ cells age-independently provokes their conversion into beta-like cells and their glucagon shortage-mediated replacement, this process resulting in islet hypertrophy and in an unexpected islet neogenesis. Taking advantage of several lineage-tracing approaches, we show that, upon Pax4-mediated alpha-to-beta-like cell conversion, pancreatic duct-lining precursor cells are mobilized, re-express the developmental gene Ngn3, and successively adopt a glucagon+ and a beta-like cell identity through a mechanism involving the reawakening of the epithelial-to-mesenchymal transition (EMT). It is worth mentioning, that these processes can repeatedly regenerate the entire beta-cell mass, and thereby reverse several rounds of streptozotocin-mediated chemically-induced Type I diabetes. This approach thereby provides promising perspectives to design novel therapeutic regenerative strategies. Aiming to gain further insight into the molecular mechanisms underlying these regeneration and reprogramming processes, and thereby identify new putative targets of interest, a thorough micro array analysis was performed using pancreata from transgenic mice conditionally misexpressing Pax4 in adult alpha-cells. We thereby identified several promising candidate genes, whose gene expression was significantly altered in induces animals. Among these was Growth factor independent 1 (Gfi1): its expression pattern and putative function in the murine pancreas will be described in this work.
6

Tratamento com metformina restaurou danos metabólicos causados pela obesidade, mas induziu a resposta inflamatória hepática. / Metformin treatment restored metabolic damage caused by obesity, but induced liver inflammatory response.

Teixeira, Alexandre Abilio de Souza 25 August 2015 (has links)
A metformina é uma droga utilizada para tratamento da diabetes tipo 2. O PPAR-α tem um papel central no controle imunometabólico. Portanto, o objetivo do estudo foi avaliar os efeitos imunometabólicos da dieta hiperlipídica (HFD), em camundongos C57BL6 (WT) e knockout para PPAR-α, tratados com metformina. Métodos: Os animais foram submetidos a uma HFD por 12 semanas, nos últimos dez dias de dieta os animais foram tratados com metformina. A oxidação de palmitato no músculo esquelético, As citocinas, no fígado, no tecido adiposo retroperitoneal, em hepatócitos e macrófagos intraperitoneais foram analisados. Resultados: O tratamento aumentou a oxidação de palmitado no músculo, promoveu um efeito anti-inflamatório no tecido adiposo e reverteu à inflamação dos macrófagos. No fígado e nos hepatócitos, a metformina causou um efeito inflamatório. Conclusão: A inflamação hepática foi induzida pelo tratamento e o efeito principal foi a um potencial aumento na inflamação nos hepatócitos. Os macrófagos tiveram uma resposta anti-inflamatória, assim como o tecido adiposo. / Metformin is a drug used to treatment of type 2 diabetes. PPAR-α plays a central role in immunometabolic control. Therefore, the aim of the study was to evaluate the effects of imumnometabolics of high fat diet (HFD) in C57BL6 mice (WT) and knockout for PPAR-α treated with metformin. Methods: The animals were subjected to a HFD for 12 weeks in the last ten days of diet the animals were treated with metformin. The palmitate oxidation in skeletal muscle, cytokines in the liver, in the retroperitoneal adipose tissue, hepatocytes and intraperitoneal macrophages were analyzed. Results: The treatment increased palmitate oxidation in muscle, it has promoted an anti-inflammatory effect in adipose tissue and macrophages to inflammation reversed. In the liver and hepatocytes, metformin caused an inflammatory effect. Conclusion: The liver inflammation was induced, and treatment was a main effect to a potential increase in inflammation in hepatocytes. Macrophages have an anti-inflammatory response, as well as adipose tissue.
7

Studies of neuropeptides in pancreatic beta cell function with special emphasis on islet amyloid polypeptide (IAPP)

Karlsson, Ella January 2000 (has links)
<p>The presence of protein amyloid in pancreas and its association to diabetes was first described 100 years ago in 1901, but was not identified as Islet Amyloid Polypeptide (IAPP) until 1986. The aim of the present work was to determine the role of the beta cell hormone, IAPP, in normal pancreatic islet physiology and during early disturbances of islet function.</p><p>Intra-islet peptides, i.e. chromogranin peptides and an extra-islet peptide, i.e. leptin, were studied to identify possible endogenous regulators of IAPP and insulin secretion. Chromogranin-B, but not chromogranin-A or pancreastatin, had the ability to inhibit islet IAPP and insulin release, suggesting that chromogranin-B may serve as an autocrine regulator of IAPP and insulin secretion. </p><p>Leptin had a more potent effect on IAPP secretion than on insulin secretion, which was dissociated from effects on islet glucose metabolism. Glucose oxidation rates were increased at physiological leptin concentrations, whereas higher leptin concentrations showed an inhibitory effect and chronically high leptin concentrations had no effect.</p><p>Female NOD mice were studied to investigate the release of IAPP in the progression to type 1 diabetes. The release of IAPP was lower than that of insulin from immune cell infiltrated islets, indicating preferential insulin release during the early course of the disease. </p><p>IAPP is expressed at an early embryonic stage. The effect of IAPP on cell proliferation in neonatal rat islets was studied in the search for a physiological role of IAPP. IAPP concentrations of (1-1000) nM stimulated neonatal islet cell proliferation mostly in beta cells and to a lesser extent in alpha cells. IAPP did not have any marked effect on the islet cell death frequency. These data indicate a role for IAPP as a potential regulator of beta cell proliferation in neonatal pancreatic islet.</p><p>It is concluded that IAPP may be involved in regulation of pancreatic beta cell function both in fetal and adult life.</p>
8

Studies of neuropeptides in pancreatic beta cell function with special emphasis on islet amyloid polypeptide (IAPP)

Karlsson, Ella January 2000 (has links)
The presence of protein amyloid in pancreas and its association to diabetes was first described 100 years ago in 1901, but was not identified as Islet Amyloid Polypeptide (IAPP) until 1986. The aim of the present work was to determine the role of the beta cell hormone, IAPP, in normal pancreatic islet physiology and during early disturbances of islet function. Intra-islet peptides, i.e. chromogranin peptides and an extra-islet peptide, i.e. leptin, were studied to identify possible endogenous regulators of IAPP and insulin secretion. Chromogranin-B, but not chromogranin-A or pancreastatin, had the ability to inhibit islet IAPP and insulin release, suggesting that chromogranin-B may serve as an autocrine regulator of IAPP and insulin secretion. Leptin had a more potent effect on IAPP secretion than on insulin secretion, which was dissociated from effects on islet glucose metabolism. Glucose oxidation rates were increased at physiological leptin concentrations, whereas higher leptin concentrations showed an inhibitory effect and chronically high leptin concentrations had no effect. Female NOD mice were studied to investigate the release of IAPP in the progression to type 1 diabetes. The release of IAPP was lower than that of insulin from immune cell infiltrated islets, indicating preferential insulin release during the early course of the disease. IAPP is expressed at an early embryonic stage. The effect of IAPP on cell proliferation in neonatal rat islets was studied in the search for a physiological role of IAPP. IAPP concentrations of (1-1000) nM stimulated neonatal islet cell proliferation mostly in beta cells and to a lesser extent in alpha cells. IAPP did not have any marked effect on the islet cell death frequency. These data indicate a role for IAPP as a potential regulator of beta cell proliferation in neonatal pancreatic islet. It is concluded that IAPP may be involved in regulation of pancreatic beta cell function both in fetal and adult life.
9

An in situ approach to study alpha cell physiology in human diabetes pathogenesis

Drotar, Denise Minerva 14 February 2022 (has links)
Background: Glucose homeostasis is tightly regulated by hormones secreted within the pancreatic islets of Langerhans. The most important are insulin and glucagon produced by beta and alpha cells respectively. Changes in beta cell mass and/or their functional deficit can lead to hyperglycemia, a major hallmark of both type 1 (T1D) and type 2 (T2D). Moreover, a dysregulation in glucagon secretion is thought to also play a major role in patients with diabetes, suggesting a failure in the counterregulatory mechanisms of glucose homeostasis in disease pathogenesis. Dysfunction at the alpha cell level in T1D manifests are blunt glucagon response to low glucose levels, which can cause severe hypoglycemic events in patients with T1D. Furthermore, exaggerated glucagon responses to glucose or amino acid intake significantly contributes to dysglycemia in both T1D and T2D patients. Most of our knowledge about glucagon and alpha cell physiology in the human setting was generated using in vivo systemic assessments or in vitro investigations of isolated human islets or dispersed single cells. Despite the increasing knowledge regarding alpha cells and glucagon biology, the underlying mechanisms of alpha cell dysfunction are still uncertain. Studies on alpha cell physiology were hindered by limited human tissue accessibility, technical methodologies and translational value of findings from rodents to humans. To fill the gap between the currently available in vivo and in vitro approaches and a more precise understanding of mechanisms of diabetes pathogenesis detailed investigation of islet cells within their native environment is needed. Aim The overall objective of this thesis was characterize alpha cell function in diabetes pathogenesis. To this end, the human pancreas slice preparation would to be adapted and advanced for the study of alpha cell physiology. These adjustments would be then used to investigate changes in alpha cell mass and function in T1D and T2D. Methods: Pancreas tissue slices were prepared from donor organs with and without T1D and from tissue donors after pancreatectomy at different stages of T2D. Immunofluorescent staining with subsequent 3D morphometry was used to quantify alpha cell volumes from 120μm thick tissue slices. Furthermore, human tissue slices were subjected to dynamic slice perifusion for the assessment of glucagon and insulin secretion kinetics in response to specific stimuli. Finally, functional and morphometrical analysis was performed on the same tissue slices to enable direct correlation of glucagon secretion and alpha cell volume in a subset of cases in the context of T1D. Results: Here we developed a semi-automatic 3D approach to quantify total endocrine cell volumes within a given volume of pancreas tissue. In addition, we established an in situ method for dynamic insulin release measurements from islets preserved in their native environment. We successfully modified this protocol to allow the measurement of glucagon release in slices from organ donors. After further optimizations, we were additionally able to also measure alpha cell function from surgical specimens after pancreatectomy. To gain insight into alpha cell pathophysiology in T1D we investigated alpha cell volume in donor organs with different disease duration and age at onset. Alpha cell volumes in slices of individuals with T1D did not show a dramatic change (neither increase nor decrease) in comparison to slices generated from non-diabetic (ND) pancreata. Furthermore, functional assessment of glucagon release using a specific stimulation protocol for alpha cells suggests preserved stimulatory capacity of these cells in slices from autoantibody positive donors. Interestingly, this is also the case in the so far studied slices from donors with different durations of diabetes. Nevertheless, normalization of secreted glucagon to the total alpha cell mass within the slice indicated reduced glucagon release in the here investigated two cases of T1D. In the context of T2D, 3D morphometrical analysis revealed that overall endocrine cell volume, including alpha cell volume, is maintained in our cohort of IGT and T2D individuals. Glucagon release can also be measured in tissue procured from patients undergoing pancreatectomy, given the presence of amino acids in the perifusion media and increased trypsin inhibitors. While we provided proof of concept using tissue from ND individuals, we are confident that the approach will give valuable insight in different states of diabetes. Conclusion: These results demonstrate that human pancreas tissue slices represent a complementary platform to study alpha cell pathophysiology in both major types of diabetes. We provide evidence that this approach can be used to study alpha cell pathophysiology in T1D and T2D. Our preliminary data indicates no defect in the stimulatory capacity in slices from Aab+ and T1D donors, however more cases need to be investigated given the heterogeneous nature of the disease. We anticipate that the here proposed protocol for measurement of glucagon release from tissue slices will help us to gain insight in the role of alpha cells in diabetes pathophysiology. / Hintergrund: Die Aufrechterhaltung der Glukosehomöostase wird durch die Hormonsekretion der Langerhans’schen Inseln im Pankreas reguliert. Die wichtigste Rolle hierbei spielen die Insulin-produzierenden Betazellen und die Glukagon-produzierenden Alphazellen. Der Verlust der Betazellmasse und/oder der Funktion kann zur Entwicklung einer Hyperglykämie führen, die ein Hauptmerkmal des Typ 1 (T1D) und Typ 2 (T2D) Diabetes ist. Darüber hinaus wird vermutet, dass auch der Mechanismus der Gegenregulierung durch die Sekretion von Glukagon eine wichtige Rolle in der Pathogenese des Diabetes spielt. Während eine fehlende Glukagonsekretion zu schweren hypoglykämischen Phasen bei Typ 1 Diabetikern führen kann, geht man zusätzlich davon aus, dass eine erhöhte Reaktivität von Alphazellen sowohl auf Glukose als auch Aminosäuren ebenfalls zum Verlust der Glukosehomöostase im T1D und T2D beitragen kann. Trotz der stetig wachsenden Erkenntnisse über die Physiologie der Alphazellen, die vor allem durch systemische Untersuchungen in vivo oder an isolierten Langerhans’schen Inseln und Einzelzellen in vitro durchgeführt wurden, sind die zugrundeliegenden Mechanismen für deren Fehlfunktion beim Menschen noch nicht eindeutig aufgeklärt. Dies beruht hauptsächlich auf nur bedingt vorhandenem humanem Gewebe, technischen Schwierigkeiten bei der Isolation der Zellen, sowie der nur bedingten Vergleichbarkeit zu Studien in Nagern. Um diese Wissenslücken zwischen in vivo und in vitro Studien schließen zu können, ist es notwendig detaillierte Untersuchungen der Zellen unter nahezu physiologischen Bedingungen und in der nativen Umgebung der Pankreas in situ durchzuführen, um Alphazell-spezifische Mechanismen in der Diabetespathogenese genauer beleuchten zu können. Ziele: Ziel dieser Dissertation war es, durch Anpassung und Weiterentwicklung der Technik zur Gewinnung von Gewebeschnitten des humanen Pankreas, die Funktion der Alphazellen sowohl unter physiologischen Bedingungen als auch in der Entwicklung des T1D und T2D genauer zu charakterisieren. Methoden: Zur Untersuchungen von Alphazellen in Gewebeschnitten in situ wurden Gewebestücke sowohl von Organspendern mit und ohne T1D, sowie von metabolisch charakterisierter Patienten in verschiedenen Stadien der T2D Pathogenese nach einer Pankreatektomie verwendet. Die aus dem Gewebe gewonnenen 120 μm dicken Schnitte wurden zum einen für immunhistochemischer Färbungen verwendet, die eine 3-dimensionale morphometrische Analyse der Alphazellmasse ermöglichen. Ferner wurden Schnitte zur Ermittlung der Kinetik von Glukagon- und Insulinsekretion nach Stimulation mittels Perifusion benutzt. Schließlich wurden sowohl die morphologischen als auch funktionellen Analysen auf denselben Gewebeschnitten durchgeführt, um die Funktion der Alphazellen mit deren Masse besser korrelieren zu können. Ergebnisse: Zusätzlich zur Mitentwicklung eines halbautomatisierten Verfahrens zur 3D Analyse von endokrinen Zellvolumina in Gewebeschnitten des Pankreas wurde die bereits vorhandene Methode zur Messung der Insulinsekretionskinetik weiterentwickelt. Außerdem erfolgte die Etablierung adäquater Protokolle zur Messung der Glukagonsekretion in humanen Gewebeschnitten, die im Kontext beider Diabetestypen verwendet wurden. Um einen besseren Einblick in die T1D Pathogenese zu erhalten, wurde das Alphazellvolumen- und die Funktion in Gewebeschnitten von Organspendern mit unterschiedlichem Diabetes Verlauf (Alter bei Diagnose, Dauer seit Diagnose) mit nicht-diabetischen, aber Autoantikörper-positiven Spendern und nicht-diabetische Kontrollen verglichen. In Bezug auf das Alphazellvolumen waren zwischen den einzelnen Gruppen keine Unterschiede zu erkennen, die auf Veränderungen in der Entwicklung und Manifestation des T1D hinweisen. Darüber hinaus ergab die funktionelle Analyse, dass die Glukagonsekretion in nicht-diabetischen, Autoantikörper-positiven Spendern erhalten bleibt. Dies konnte zusätzlich auch in den bisher untersuchten Geweben von Typ 1 Diabetikern nachgewiesen werden, obwohl die Volumen-normalisierte Sekretion auf eine geringere Glukagonausschüttung hindeutet. Im Hinblick auf die T2D Pathogenese konnte bei der 3D Morphometrie von Nichtdiabetikern, Patienten mit beeinträchtigter Glukosetoleranz und Typ 2 Diabetikern keinerlei Unterschiede in den endokrinen Zellvolumina festgestellt werden. Durch die Anpassung der Konditionen für die Perifusion von reseziertem Gewebe konnte bei Nichtdiabetikern die erfolgreiche Messung der Glukagonsekretion gezeigt werden und ermöglicht zukünftig auch die Untersuchung einer möglichen Alphazelldysfunktion in der Entwicklung eines T2D. Schlussfolgerung: Die Ergebnisse dieser Arbeit zeigen, dass die etablierte Plattform zur morphologischen und funktionellen Analyse humaner Pankreasgewebeschnitte in situ eine wichtige Rolle in der Untersuchung der Alphazellen in der Diabetes-Pathogenese spielt. Die bisher erhobenen Daten zur Untersuchung des T1D haben gezeigt, dass die Kapazität der Glukagonsekretion nicht signifikant verändert ist. Aufgrund des heterogenen Krankheitsverlaufs beider Diabetesformen ist es jedoch notwendig Gewebe von einer größeren Anzahl an Spendern/Patienten zu untersuchen, um einen besseren Einblick in die Rolle der Alphazellen in der Entstehung des Diabetes zu erhalten.
10

The roles of pancreatic hormones in regulating pancreas development and beta cell regeneration

Ye, Lihua 16 June 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Diabetes mellitus is a group of related metabolic diseases that share a common pathological mechanism: insufficient insulin signaling. Insulin is a hormone secreted from pancreatic β cells that promotes energy storage and consequently lowers blood glucose. In contrast, the hormone glucagon, released by pancreatic α cells, plays a critical complementary role in metabolic homeostasis by releasing energy stores and increasing blood glucose. Restoration of β cell mass in diabetic patients via β cell regeneration is a conceptually proven approach to finally curing diabetes. Moreover, in situ regeneration of β cells from endogenous sources would circumvent many of the obstacles encountered by surgical restoration of β cell mass via islet transplantation. Regeneration may occur both by β cell self-duplication and by neogenesis from non-β cell sources. Although the mechanisms regulating the β cell replication pathway have been highly investigated, the signals that regulate β cell neogenesis are relatively unknown. In this dissertation, I have used zebrafish as a genetic model system to investigate the process of β cell neogenesis following insulin signaling depletion by various modes. Specifically, I have found that after their ablation, β cells primarily regenerate from two discrete cellular sources: differentiation from uncommitted pancreatic progenitors and transdifferentiation from α cells. Importantly, I have found that insulin and glucagon play crucial roles in controlling β cell regeneration from both sources. As with metabolic regulation, insulin and glucagon play counter-balancing roles in directing endocrine cell fate specification. These studies have revealed that glucagon signaling promotes β cell formation by increasing differentiation of pancreas progenitors and by destabilizing α cell identity to promote α to β cell transdifferentiation. In contrast, insulin signaling maintains pancreatic progenitors in an undifferentiated state and stabilizes α cell identity. Finally, I have shown that insulin also regulates pancreatic exocrine cell development. Insufficient insulin signaling destabilized acinar cell fate and impairs exocrine pancreas development. By understanding the roles of pancreatic hormones during pancreas development and regeneration can provide new therapeutic targets for in vivo β cell regeneration to remediate the devastating consequences of diabetes.

Page generated in 0.0456 seconds