• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation multi-échelles de l'équation de Vlasov

Mouton, Alexandre Frénod, Emmanuel Sonnendrücker, Eric. January 2009 (has links) (PDF)
Thèse de doctorat : Mathématiques appliquées : Strasbourg : 2009. / Titre provenant de l'écran-titre. Bibliogr. 3 p.
2

Diagnostic des systèmes non linéaires - Contribution aux méthodes de découplage

Join, Cédric 29 November 2002 (has links) (PDF)
Le travail présenté dans ce mémoire porte sur le diagnostic de systèmes non linéaires en temps continu. Dans le but de déterminer le type et l'apparition de défauts, des résidus structurés sont générés à partir de filtres, en respectant les étapes suivantes : - la première étape est une phase de découplage d'une partie de l'état du système de l'effet des perturbations. Nous proposons une méthode qui permet de diminuer la dimension de ce sous-espace d'état de manière à limiter au maximum la propagation de ces perturbations dans l'espace d'état ; - la deuxième étape est l'étude de l'ensemble des sous-espaces d'état sensibles aux défauts considérés dans le but de déterminer s'il est possible de les détecter et isoler. En supposant la non-apparition simultanée de plusieurs défauts, une analyse structurelle des caractéristiques géométriques du système est menée. Ainsi, des conditions nécessaires et suffisantes à l'isolation des défauts moins sévères que celles associées à la résolution du F.P.R.G. sont proposées ; - la troisième et dernière étape est la synthèse d'un filtre d'isolation des défauts considérés. Une méthode systématique assurant une expression explicite de l'injection de sortie est proposée. Une étude de la convergence des estimations de l'état du filtre vers l'état réel du système est également effectuée à partir de la théorie de la contraction. L'ensemble de la méthode est appliquée sur le système des ``3 cuves''. Des simulations mettent en relief les résultats obtenus et l'apport des méthodes proposées. Le dernier chapitre porte sur les prémices d'un formalisme algébrique du diagnostic pour les systèmes linéaires qui semble être une perspective intéressante pour les systèmes non linéaires.
3

Inégalites d'observabilité et résolution adaptative de l'équation de Vlasov par éléments finis hiérarchiques

Mehrenberger, Michel 15 December 2004 (has links) (PDF)
La premiere partie est consacree a l'etude d'inegalites d'observabilite, qui interviennent en theorie du controle.<br />On donne ainsi un theoreme abstrait qui permet de deduire l'observabilite d'un systeme par perturbation compacte, avec une <br />condition affaiblie sur l'operateur perturbe. Ce theoreme est ensuite applique a l'observabilite de certains systemes <br />faiblement couples. On demontre aussi l'optimalite d'un theoreme recent concernant une generalisation de l'identite de <br />Parseval aux differences divisees d'exponentielles. La deuxieme partie de ce travail est consacree a la resolution numerique <br />de l'equation de Vlasov en utilisant des schemas de type semi-lagrangien. On demontre dans un premier temps la convergence de schemas d'ordre eleve arbitraire, en completant des resultats precedents. On developpe ensuite une nouvelle methode <br />numerique basee sur une interpolation par elements finis hierarchiques biquadratiques, qui permet ici une parallelisation <br />efficace. Dans le cadre d'une reconstruction affine par maille, on definit une strategie de raffinement et des quantites qui <br />controlent l'erreur produite a chaque pas de temps pour construire finalement un algorithme adaptatif dont on montre la convergence.
4

Développement d'une méthode sans maillage basée sur les approximations de Taylor / Development of a meshless method using Taylor series

Tampango, Yendoubouam 16 November 2012 (has links)
Ces dernières décennies, de nouvelles méthodes numériques connues sous le nom de « méthodes sans maillage » ont été développées. Contrairement à la MEF, ces méthodes n'utilisent qu'un ensemble de noeuds répartis dans le domaine sans demander un maillage de celui-ci. Jusqu'à présent, aucune de ces méthodes n'est parvenue à satisfaire les utilisateurs de la MEF. Dans cette thèse, nous proposons une méthode sans maillage, utilisant les approximations de Taylor. Cette méthode a l'avantage de n'utiliser que des points sur la frontière. En effet, l'EDP est résolue sous sa forme forte dans le domaine et les conditions aux limites sont appliquées par la méthode des moindres carrés. Cette méthode a été introduite, il y a 3 ans par S. Zeze dans sa thèse. Les tests académiques effectués en linéaire ont montré que cette méthode est très précise et que la convergence est améliorée en augmentant le degré, comme dans la p-version des EF. Nos travaux de thèse sont une suite des travaux de S. Zeze et ils visent à rendre plus robuste la méthode et aussi à élargir son champ d'application. Dans un premier temps, nous faisons une analyse mathématique de la méthode. Cette analyse passe par l'analyse des séries calculées. Le but de cette analyse est d'évaluer le domaine de convergence de la solution. Les résultats obtenus ont montré que pour certains problèmes, il faut subdiviser le domaine en quelques sous domaines et faire une résolution par sous domaine. La suite de nos travaux a donc été d'établir une technique de raccordement qui permettra d'assurer les conditions de transmission aux interfaces, dans le cas d'une résolution par sous domaine. En dernière partie, nous étendons l'application de la méthode aux problèmes non linéaires, en la couplant à une méthode de linéarisation / In these last decades, new numerical methods known as « meshless methods » have been developped. Contrary to the FEM, these methods uses only a set of nodes in the domain, without need of any mesh. Until now, any of these methods has convinced users of FEM. In this paper, we present a new meshless method using Taylor series expansion. In this method, the PDE is solved quasi exactly in the domain and the boundary conditions are applied by using a least square method. Then only the boundary discretisation is needed so the proposed method is a « true boundary meshless method ». This technique has been proposed for the first time by S. Zeze in his PhD thesis. The study of some linear problems has shown that this technique leads to a very good accuracy and that the convergence can be improved by increasing approximation degree. Our work is a continuation of S. Zeze work, and it consists to make the proposed method more robust and to extend its range of application. For that, we first make an analysis of the series computed by the method. The aim of this analysis was to evaluate the domain of validity of these series. This analysis showed that, for some problems, an accuracy cannot be obtained without splitting the domain in subdomains and making a resolution by subdomains. Therefore the second part of our work was to define a technique which will ensure the continuity at the interface between subdomains, in the case of a resolution by subdomains. The last part of our work was dedicated to non-linear problems. We establish an algorithm to show how the proposed method can deal with nonlinear-problems
5

Kernel LMS à noyau gaussien : conception, analyse et applications à divers contextes / Gaussian kernel least-mean-square : design, analysis and applications

Gao, Wei 09 December 2015 (has links)
L’objectif principal de cette thèse est de décliner et d’analyser l’algorithme kernel-LMS à noyau Gaussien dans trois cadres différents: celui des noyaux uniques et multiples, à valeurs réelles et à valeurs complexes, dans un contexte d’apprentissage distributé et coopératif dans les réseaux de capteurs. Plus précisement, ce travail s’intéresse à l’analyse du comportement en moyenne et en erreur quadratique de cas différents types d’algorithmes LMS à noyau. Les modèles analytiques de convergence obtenus sont validés par des simulations numérique. Tout d’abord, nous introduisons l’algorithme LMS, les espaces de Hilbert à noyau reproduisants, ainsi que les algorithmes de filtrage adaptatif à noyau existants. Puis, nous étudions analytiquement le comportement de l’algorithme LMS à noyau Gaussien dans le cas où les statistiques des éléments du dictionnaire ne répondent que partiellement aux statistiques des données d’entrée. Nous introduisons ensuite un algorithme LMS modifié à noyau basé sur une approche proximale. La stabilité de l’algorithme est également discutée. Ensuite, nous introduisons deux types d’algorithmes LMS à noyaux multiples. Nous nous concentrons en particulier sur l’analyse de convergence de l’un d’eux. Plus généralement, les caractéristiques des deux algorithmes LMS à noyaux multiples sont analysées théoriquement et confirmées par les simulations. L’algorithme LMS à noyau complexe augmenté est présenté et ses performances analysées. Enfin, nous proposons des stratégies de diffusion fonctionnelles dans les espaces de Hilbert à noyau reproduisant. La stabilité́ de cas de l’algorithme est étudiée. / The main objective of this thesis is to derive and analyze the Gaussian kernel least-mean-square (LMS) algorithm within three frameworks involving single and multiple kernels, real-valued and complex-valued, non-cooperative and cooperative distributed learning over networks. This work focuses on the stochastic behavior analysis of these kernel LMS algorithms in the mean and mean-square error sense. All the analyses are validated by numerical simulations. First, we review the basic LMS algorithm, reproducing kernel Hilbert space (RKHS), framework and state-of-the-art kernel adaptive filtering algorithms. Then, we study the convergence behavior of the Gaussian kernel LMS in the case where the statistics of the elements of the so-called dictionary only partially match the statistics of the input data. We introduced a modified kernel LMS algorithm based on forward-backward splitting to deal with $\ell_1$-norm regularization. The stability of the proposed algorithm is then discussed. After a review of two families of multikernel LMS algorithms, we focus on the convergence behavior of the multiple-input multikernel LMS algorithm. More generally, the characteristics of multikernel LMS algorithms are analyzed theoretically and confirmed by simulation results. Next, the augmented complex kernel LMS algorithm is introduced based on the framework of complex multikernel adaptive filtering. Then, we analyze the convergence behavior of algorithm in the mean-square error sense. Finally, in order to cope with the distributed estimation problems over networks, we derive functional diffusion strategies in RKHS. The stability of the algorithm in the mean sense is analyzed.
6

Schémas volumes finis pour des problèmes multiphasiques / Finite-volume schemes for multiphasic problems

Nabet, Flore 08 December 2014 (has links)
Ce manuscrit de thèse porte sur l'analyse numérique de schémas volumes finis pour la discrétisation de deux systèmes particuliers d'équations. Dans un premier temps nous étudions l'équation de Cahn-Hilliard associée à des conditions aux limites dynamiques dont l'une des principales difficultés est que cette condition aux limites est une équation parabolique, non linéaire, posée sur le bord et couplée avec l'intérieur du domaine. Nous proposons une discrétisation de type volumes finis en espace qui permet de coupler naturellement l'équation dans le domaine et celle sur sa frontière par un terme de flux et qui s'adapte facilement à la géométrie courbe du domaine. Nous montrons l'existence et la convergence des solutions discrètes vers une solution faible du système. Dans un second temps nous étudions la stabilité Inf-Sup du problème de Stokes pour un schéma volumes finis de type dualité discrète (DDFV). Nous donnons une analyse complète de la stabilité Inf-Sup inconditionnelle dans certains cas et de la stabilité de codimension 1 dans le cas de maillages cartésiens. Nous mettons également en place une méthode numérique permettant de calculer la constante Inf-Sup associée à ce schéma pour un maillage donné. On peut ainsi observer le comportement stable ou instable selon les cas en fonction de la géométrie des maillages. Dans une dernière partie nous proposons un schéma DDFV pour un modèle couplé Cahn-Hilliard/Stokes ce qui nécessite l'introduction de nouveaux opérateurs discrets. Nous démontrons la décroissance de l'énergie au niveau discret ainsi que l'existence d'une solution au problème discret. L'ensemble de ces travaux est validé par de nombreux résultats numériques. / This manuscript is devoted to the numerical analysis of finite-volume schemes for the discretization of two particular equations. First, we study the Cahn-Hilliard equation with dynamic boundary conditions whose one of the main difficulties is that this boundary condition is a non-linear parabolic equation on the boundary coupled with the interior of the domain. We propose a spatial finite-volume discretization which is well adapted to the coupling of the dynamics in the domain and those on the boundary by the flux term. Moreover this kind of scheme accounts naturally for the non-flat geometry of the boundary. We prove the existence and the convergence of the discrete solutions towards a weak solution of the system. Second, we study the Inf-Sup stability of the discrete duality finite volume (DDFV) scheme for the Stokes problem. We give a complete analysis of the unconditional Inf-Sup stability in some cases and of codimension 1 Inf-Sup stability for Cartesian meshes. We also implement a numerical method which allows us to compute the Inf-Sup constant associated with this scheme for a given mesh. Thus, we can observe the stable or unstable behaviour that can occur depending on the geometry of the meshes. In a last part we propose a DDFV scheme for a Cahn-Hilliard/Stokes phase field model that required the introduction of new discrete operators. We prove the dissipation of the energy in the discrete case and the existence of a solution to the discrete problem. All these research results are validated by extensive numerical results.
7

Modélisation, observation et commande d’une classe d’équations aux dérivées partielles : application aux matériaux semi-transparents / Modeling, analysis and control for a class of partial differential equations : application to thermoforming of semi-transparent materials

Ghattassi, Mohamed 29 September 2015 (has links)
Le travail présenté dans ce mémoire nous a permis d’étudier d’un point de vue théorique et numérique le transfert de chaleur couplé par rayonnement et conduction à travers un milieu semi-transparent, gris et non diffusant dans une géométrie multidimensionnelle 2D. Ces deux modes de transfert de chaleur sont décrits par un couplage non linéaire de l’équation de la chaleur non linéaire (CT) et de l’équation du transfert radiatif (ETR). Nous avons présenté des résultats d’existence, d’unicité locale de la solution pour le système couplé avec des conditions aux limites de type Dirichlet homogènes en utilisant le théorème du point fixe de Banach. Par ailleurs, les travaux réalisés nous ont permis de mettre au point un code de calcul qui permet de simuler la température. Nous avons utilisé la quadrature S_N pour la discrétisation angulaire de l’ETR. La discrétisationde l'ETR dans la variable spatiale est effectuée par la méthode de Galerkin discontinue (DG) et en éléments finis pour l'équation de la chaleur non linéaire. Nous avons démontré la convergence du schémanumérique couplé en utilisant la méthode du point fixe discret. Le modèle discret, sous la forme d’équations différentielles ordinairesnon linéaires obtenu après une approximation nous a permis de fairel’analyse et la synthèse d’estimateurs d’état et de lois de commandepour la stabilisation. Grâce à la structure particulière du modèle età l’aide du DMVT. Nous avons proposé un observateur d’ordre réduit.D’autre part nous avons réussi à construire une matrice de gain quiassure la stabilité de l’observateur proposé. Une extension au filtrage $\mathcal{H}_{\infty}$ est également proposée. Une nouvelleinégalité matricielle (LMI) est donnée dans le cas d’une commandebasée observateur. Nous avons étendu à l’approche d’ordre réduit dans le cas de la commande basée observateur et nous avons montré la stabilité sous l’action de la rétroaction. De même une extension au filtrage $\mathcal{H}_{\infty}$ est également proposée. Tous les résultats sont validés par des simulations numériques. / This thesis investigates the theoretical and numerical analysis of coupled radiative conductive heat transfer in a semi-transparent, gray and non-scattering 2D medium. This two heat transfer modes are described by the radiative transfer equation (RTE) and the nonlinear heat equation (NHE). We proved the existence and uniqueness of the solution of coupled systems with homogeneous Dirichlet boundary conditions using the fixed-point theorem. Moreover, we developed a useful algorithm to simulate the temperature in the medium. We used the quadrature $S_{N}$ for the angular discretization of the RTE. The spatial discretization of RTE was made by the discontinuous Galerkin method (DG) and the finite element method for the non-linear heat equation. We have shown the convergence and the stability of the coupled numerical scheme using the discrete fixed point. The discrète model obtained after an approximation allowed us to do the analysis and synthesis of state estimators and feedback control design for stabilization of the system. Thanks to the special structure of the model and using the Differential Mean Value Theorem (DMVT), we proposed a reduced order observer and we construct a gain matrix, which ensures the exponential stability of the proposed observer and guarantees the boundedness of the estimate vector. An extension to $\mathcal{H}_{\infty}$ filtering is also provided. We have extended the reduced order approach in the case of the observer-based controller and we proved the exponential stability under the control feedback law. Similarly, an extension to $\mathcal{H}_{\infty}$ filtering is also provided. The obtained results were validated through several numerical simulations.

Page generated in 0.1057 seconds