Spelling suggestions: "subject:"analyse dde variance"" "subject:"analyse dee variance""
11 |
Choix de portefeuille de grande taille et mesures de risque pour preneurs de décision pessimistesNoumon, Codjo Nérée Gildas Maxime 08 1900 (has links)
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées.
Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère.
Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays.
Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011. / This thesis consists of three chapters on the topics of portfolio choice in a high-dimensional context, and risk measurement. The first chapter addresses the estimation error issue that arises when constructing large portfolios in the mean-variance framework. The second chapter investigates the relevance of currency risk for optimal domestic portfolios, evaluates their ability of to diversify away currency risk, and study the links between portfolio weights stability and currency risk. Finally, under the assumption that decision makers are pessimistic, the third chapter derives the risk premium, propose a measure of the degree of pessimism, and provide a statistical framework for their estimation.
The first chapter improves the performance of the optimal portfolio weig-hts obtained under the mean-variance framework of Markowitz (1952). Indeed, these weights give unsatisfactory results, when the mean and variance are replaced by their sample counterparts (plug-in rules). This problem is amplified when the number of assets is large and the sample covariance is singular or nearly singular. The chapter investigates four regularization techniques to stabilizing the inverse of the covariance matrix: the ridge, spectral cut-off, Landweber-Fridman, and LARS Lasso. These four methods involve a tuning parameter that needs to be selected. The main contribution is to derive a data-based method for selecting the tuning parameter in an optimal way, i.e. in order to minimize the expected loss in utility of a mean-variance investor. The cross-validation type criterion derived is found to take a similar form for the four regularization methods. The resulting regularized rules are compared to the sample-based mean-variance portfolio and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio and expected loss in utility. The main finding is that regularization to covariance matrix significantly improves the performance of the mean-variance problem and outperforms the naive portfolio, especially in ill-posed cases, as suggested by our simulations and empirical studies.
In the second chapter, we investigate the extent to which optimal and stable portfolios of domestic assets can reduce or eliminate currency risk. This is done using monthly returns on 48 U.S. industries, from 1976 to 2008. To tackle the instabilities inherent to large portfolios, we use the spectral cut-off regularization described in Chapter 1. This gives rise to a family of stable global minimum portfolios that allows investors to select different percentages of principal components for portfolio construction. Our empirical tests are based on a conditional International Asset Pricing Model (IAPM), augmented with the size and book-to-market factors of Fama and French (1993). Using two trade-weighted currency indices of industrialized countries currencies and emerging markets currencies, we find that currency risk is priced and time-varying for global minimum portfolios. These strategies also lead to a significant reduction in the exposure to currency risk, while keeping the average premium contribution to total premium approximately the same. The global minimum weights considered are an alternative to market capitalization weights used in the U.S. market index. Therefore, our findings complement the well established results that currency risk is significantly priced and economically meaningful at the industry and country level in most countries.
Finally, the third chapter derives a measure of the risk premium for rank-dependent preferences and proposes a measure of the degree of pessimism, given a distortion function. The introduced measures generalize the common risk measures derived in the expected utility theory framework, which is frequently violated in both experimental and real-life situations. These measures are derived in the neighborhood of a given random loss variable, using the notion of local utility function. A particular interest is devoted to the CVaR, which is now widely used for asset allocation and has been advocated to complement the Value-at-risk (VaR) proposed since 1996 by the Basel Committee on Banking Supervision. We provide the statistical framework needed to conduct inference on the derived measures. Finally, the proposed estimators
|
12 |
Choix de portefeuille de grande taille et mesures de risque pour preneurs de décision pessimistesNoumon, Codjo Nérée Gildas Maxime 08 1900 (has links)
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées.
Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère.
Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays.
Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011. / This thesis consists of three chapters on the topics of portfolio choice in a high-dimensional context, and risk measurement. The first chapter addresses the estimation error issue that arises when constructing large portfolios in the mean-variance framework. The second chapter investigates the relevance of currency risk for optimal domestic portfolios, evaluates their ability of to diversify away currency risk, and study the links between portfolio weights stability and currency risk. Finally, under the assumption that decision makers are pessimistic, the third chapter derives the risk premium, propose a measure of the degree of pessimism, and provide a statistical framework for their estimation.
The first chapter improves the performance of the optimal portfolio weig-hts obtained under the mean-variance framework of Markowitz (1952). Indeed, these weights give unsatisfactory results, when the mean and variance are replaced by their sample counterparts (plug-in rules). This problem is amplified when the number of assets is large and the sample covariance is singular or nearly singular. The chapter investigates four regularization techniques to stabilizing the inverse of the covariance matrix: the ridge, spectral cut-off, Landweber-Fridman, and LARS Lasso. These four methods involve a tuning parameter that needs to be selected. The main contribution is to derive a data-based method for selecting the tuning parameter in an optimal way, i.e. in order to minimize the expected loss in utility of a mean-variance investor. The cross-validation type criterion derived is found to take a similar form for the four regularization methods. The resulting regularized rules are compared to the sample-based mean-variance portfolio and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio and expected loss in utility. The main finding is that regularization to covariance matrix significantly improves the performance of the mean-variance problem and outperforms the naive portfolio, especially in ill-posed cases, as suggested by our simulations and empirical studies.
In the second chapter, we investigate the extent to which optimal and stable portfolios of domestic assets can reduce or eliminate currency risk. This is done using monthly returns on 48 U.S. industries, from 1976 to 2008. To tackle the instabilities inherent to large portfolios, we use the spectral cut-off regularization described in Chapter 1. This gives rise to a family of stable global minimum portfolios that allows investors to select different percentages of principal components for portfolio construction. Our empirical tests are based on a conditional International Asset Pricing Model (IAPM), augmented with the size and book-to-market factors of Fama and French (1993). Using two trade-weighted currency indices of industrialized countries currencies and emerging markets currencies, we find that currency risk is priced and time-varying for global minimum portfolios. These strategies also lead to a significant reduction in the exposure to currency risk, while keeping the average premium contribution to total premium approximately the same. The global minimum weights considered are an alternative to market capitalization weights used in the U.S. market index. Therefore, our findings complement the well established results that currency risk is significantly priced and economically meaningful at the industry and country level in most countries.
Finally, the third chapter derives a measure of the risk premium for rank-dependent preferences and proposes a measure of the degree of pessimism, given a distortion function. The introduced measures generalize the common risk measures derived in the expected utility theory framework, which is frequently violated in both experimental and real-life situations. These measures are derived in the neighborhood of a given random loss variable, using the notion of local utility function. A particular interest is devoted to the CVaR, which is now widely used for asset allocation and has been advocated to complement the Value-at-risk (VaR) proposed since 1996 by the Basel Committee on Banking Supervision. We provide the statistical framework needed to conduct inference on the derived measures. Finally, the proposed estimators
|
13 |
Impact de l'implantation de principe et d'outil du 4.0 et de l'agilité dans une PME québécoise - étude par simulationAbdulnour, Samir January 2021 (has links) (PDF)
No description available.
|
14 |
Bioresorbable coronary stents : non-invasive quantitative assessment of edge and intrastent plaque – a 256-slice computed tomography longitudinal studyZdanovich, Evguenia 10 1900 (has links)
Les bioresorbable stents (BRS), en français intitulés tuteurs coronariens biorésorbables, sont constitués d’un polymère biorésorbable, plutôt que de métal, et ne créent pas d’artéfacts métalliques significatifs en tomodensitométrie (TDM). Cela permet une meilleure évaluation de la plaque coronarienne sous ces tuteurs en TDM qu’avec les anciens tuteurs qui sont en métal.
OBJECTIF: Évaluer l’évolution de la composition de la plaque, sa fraction lipidique (FL)— marqueur de vulnérabilité de la plaque, dans les 3 zones pré-tuteur (bord proximal), intra-tuteur et post-tuteur (bord distal), et le volume de la plaque entre 1 et 12 mois post-implantation de BRS.
MÉTHODOLOGIE: Il s’agit d’une étude observationnelle longitudinale réalisée chez 27 patients consécutifs (âge moyen 59,7 +/- 8,6 ans) et recrutés prospectivement pour une imagerie par TDM 256-coupes à 1 et 12 mois post-implantation de BRS (35 tuteurs total). Les objectifs primaires sont: volume de plaque totale et de FL (mm3) comparés entre 1 et 12 mois. Afin de tenir compte de la corrélation intra-patient, des analyses de variance des modèles linéaires mixtes avec ou sans spline sont utilisés avec deux facteurs répétés temps et zone/bloc (1 bloc= 5 mm en axe longitudinal). La valeur % FL= volume absolu du FL/ volume total de la plaque.
RÉSULTATS: Notre analyse par bloc ou par spline n’a pas démontré une différence significative dans les volumes de plaque ou des FL dans les zones pre- intra- and post-tuteur entre 1 et 12 mois.
CONCLUSION: Notre étude a réussi à démontrer la faisabilité d’une analyse non-invasive quantitative répétée de la plaque coronarienne et de la lumière intra-tuteur avec l’utilisation de TDM 256 coupes. Cette étude pilote n’a pas démontré de différence significative dans les volumes des plaques et atténuation entre 1- et 12- mois de follow-up post-implantation de BRS. Notre méthode pourrait être appliquée à l’évaluation des différents structures ou profils pharmacologiques de ces tuteurs. / Coronary bioresorbable stents (BRS) are made of a bioresorbable polymer rather than metal. Unlike metallic stents, BRS do not produce significant artifacts in computed tomography (CT) and are radiolucent in CT, making it possible to evaluate coronary plaque beneath an implanted stent.
PURPOSE: The purpose of our study was to evaluate the volumes of plaque and low attenuation plaque components (LAP —a marker of plaque vulnerability) of pre-, intra- and post-stent plaque location between 1 and 12 months post-implantation.
METHODS: In our prospective longitudinal study, we recruited 27 consecutive patients (mean age 59.7 +/- 8.6 years) with bioresorbable stents (n=35) for a 256-slice ECG-synchronized CT evaluation at 1 month and at 12 months post stent implantation. Total plaque volume (mm3) as well as absolute and relative (%) LAP volume per block in the pre-, intra- and post-stent zones were analyzed; comparison of 1 and 12 months post BRS implantation. Changes in these variables were assessed using mixed effects models with and without spline, which also accounted for correlation between repeated measurements with factors such as time and zone/block (1 block = 5 mm in longitudinal axis). The value % LAP= LAP absolute volume/ total plaque volume.
RESULTS: Our block or spline model analysis showed no significant difference in plaque or LAP volumes in pre-, intra- and post-stent zones measured at 1 month and at 12 months.
CONCLUSION: Our study demonstrates the feasibility of repeated non-invasive quantitative analysis of intrastent coronary plaque and in-stent lumen using a 256-channel CT scan. This pilot study did not show significant differences in plaque volume and attenuation between 1- and 12-month follow-up from stent implantation. The method we used could be applied to the evaluation of different stent structures or different pharmacological profiles of bioresorbable stents.
|
15 |
Modélisation de comportements dans les systèmes dynamiques : <br />Application à l'organisation et à la régulation de stationnement et de déplacement dans les Systèmes de Trafic UrbainBoussier, Jean-Marie 03 May 2007 (has links) (PDF)
L'objectif de nos travaux est de développer un cadre méthodique afin de modéliser les préférences, les changements de comportement des individus ainsi que leurs impacts sur l'état d'un système complexe dans un contexte dynamique. L'utilisateur doit simuler les conséquences des politiques de transports et d'urbanisme sur l'offre et demande de stationnement, étape essentielle. Modéliser les préférences hétérogènes des usagers, intégrer des connaissances, selon des logiques comportementales différentes, ont justifié l'approche multi agents. Afin d'avoir des représentations adaptatives et évolutives des comportements des agents individus, les processus décisionnels et d'apprentissage sont modélisés au moyen d'un panier d'outils issus de l'optimisation des procédés industriels, des techniques Data Mining, de marketing. L'emploi personnalisé du simulateur avec l'interactivité utilisateursimulateur a motivé l'adaptation de ce cadre méthodique à la simulation des systèmes complexes sociétaux.
|
16 |
Etude de la production et de l'émanation de composés volatils malodorants sur textile à usage sportif / Production and emission of human body odors from textile for sportsLéal, Françoise 04 November 2011 (has links)
Si la sueur fraîchement émise par le corps humain est inodore, la dégradation de celle-ci par la flore bactérienne cutanée produit des composés volatils malodorants, responsables des odeurs de transpiration. Les odeurs de transpiration apparaissent également sur les vêtements au cours de leur utilisation, particulièrement sur les textiles réalisés en fibres synthétiques. Ce travail a pour but d’améliorer la compréhension du phénomène d’émanation d’odeurs en étudiant l’effet du sujet testé, l’effet de la flore bactérienne et l’effet du textile sur les émissions de composés volatils malodorants.L’intérêt de ce travail réside dans l’approche globale de la problématique des odeurs de transpiration et dans la diversité des méthodes de mesure mises en place, tant dans l’étude de la flore microbiologique que dans les méthodes de mesures des composés odorants émis.Dans un premier temps, le dénombrement simultané de la flore bactérienne sur la peau et sur le vêtement a été réalisé sur un échantillon de 15 sujets à l’issue d’un exercice physique. Cette expérimentation a permis d’évaluer le taux de transfert bactérien moyen lors d’une activité sportive et d’étudier son rôle dans l’émission d’odeurs. Ensuite, afin d’affiner ces résultats, une méthode basée sur la biologie moléculaire a été mise en place pour réaliser le suivi qualitatif de la stabilité de la flore commensale axillaire d’un sujet pendant 3 mois. Le transfert bactérien spécifique entre la peau du testeur et le vêtement a été étudié pour 4 matières textiles sélectionnées (dont le coton et le PET). Ceci a permis de déterminer le rôle du transfert bactérien spécifique dans l’émission des odeurs à partir de textile.Enfin, le dernier chapitre est consacré à l’étude de l’émission de composés volatils et odorants à l’aide de mesures olfactives et d’un nez électronique au cours du temps par 8 composants textiles sélectionnés. Après traitement statistique par analyse en composante principale et étude détaillée des mesures, 9 composés chimiques ont été identifiés comme indicateurs d’un comportement textile malodorant. Ces derniers pourraient être utilisés dans la mise en place d’une méthode ciblée de mesure physico-chimique des mauvaises odeurs.Ce travail a permis de déterminer l’impact de chacun des facteurs sujet, flore bactérienne et textile dans l’émission d’odeurs. En outre, ce travail ouvre des perspectives sur l’étude des contaminations bactériennes par contact, mais également dans l’étude des odeurs, sur les phénomènes de désorption de molécules volatiles à partir de différentes matrices textiles et sur les solutions pouvant être envisagées pour limiter les émissions odorantes à partir de textiles. / Fresh human sweat is odorless. Odoriferous volatile compounds are produced by the metabolism of bacteria living on the skin, generating strong malodor. Sweaty body odors do also appear on clothes during use, and especially on synthetic fabrics. The aim of this document is to improve understanding of odor emission by investigating subject effect, microbiota effect and fabric effect on the emission of odoriferous volatile compounds.Odors of perspiration are hereby globally approached with a wide use of methods and experimental devices, for microbial flora study as well as for odoriferous volatile compounds emission study.First, microflora enumeration has been simultaneously processed on the skin and on the fabric after exercise for 15 subjects. This experiment allowed an evaluation of the average bacterial transfer yield during physical activity and the beginning of the investigation of its effect on odor emission.A molecular biology methodology has then been developed in order to refine these results. Monitoring of qualitative composition of the microbiota has been performed to study the stability of the armpit’s ecosystem on a subject during 3 months. Specific microbial transfer from subject’s skin to clothe has been performed for 4 textile fabrics (including cotton and PET). This leaded to characterize the effect of specific bacterial transfer on odor emission from fabric.The last chapter is dedicated to the study of the emission of odoriferous volatile compounds over time using olfactory measurements and electronic nose for 8 selected fabrics. Principal component analysis targeted 9 chemical compounds that have been selected as malodorous behavior indicators for a given fabric. Those 9 compounds could be used for setting up a fitted physicochemical method of malodor.To conclude, this study helped to understand the effect of 3 factors in odor perception from a fabric after sport : subject, microbial flora and fabric. Perspectives have been charted on contact microbial contamination, but also on odor, and especially on desorption of odoriferous volatile molecules from a textile or knitted matrix. The solutions that could be used to limit malodorous emission from fabrics have also been discussed.
|
Page generated in 0.0722 seconds