• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 92
  • 47
  • Tagged with
  • 274
  • 274
  • 168
  • 167
  • 124
  • 107
  • 81
  • 66
  • 62
  • 60
  • 59
  • 53
  • 53
  • 52
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Aerodynamique Instationnaire et Methode Adjointe

Belme, Anca 08 December 2011 (has links) (PDF)
Cette thèse contribue à la simulation numérique des écoulements d'un fluide compressible modélisé par les équations de Euler et Navier-Stokes: étude d'un schéma d'ordre élévé basé sur une matrice de masse, modélisation des écoulement turbulents compressibles à très haut Reynolds, développement des estimateurs et correcteurs d'erreurs a posteriori et a priori, et adaptation de maillage anisotrope pour les fonctionnelles d'observation. Concernant la prédiction des écoulements turbulents, on s'est intéressé aux modèles hybrides de type RANS/LES comportant les nouveautés suivantes: traitement des tourbillons de grande échelle utilisant la formulation VMS (Variational Multi-Scale) et du RANS employé sur la paroi sur une distance imposée via une zone de protection conçue afin d'éviter le phénomène assez commun apelé "grid induced model depletion". Le niveau de viscosité du modèle VMS-LES est de plus controllé par un procédé de double filtre dynamique. La seconde partie concerne l'adaptation de maillage anisotrope pour mieux observer une fontionnelle d'observation. Les estimations a priori sont réalises pour le modèle des équations d'Euler et Navier-Stokes en instationnaire en 2D et 3D. A partir de ces estimations on sait définir les maillages optimaux au cours du calcul instationnaire, en fonction de l'état et de l'état adjoint. Le système d'optimalité est discrétisé et résolu à l'aide d'une méthode de point fixe instationnaire global, comportant une stratégie de stockage/recalcul pour le couplage état/ état adjoint. Des applications à la propagation d'ondes de choc et d'ondes acoustiques sont présentées.
232

Amélioration des performances de méthodes Galerkin discontinues d'ordre élevé pour la résolution numérique des équations de Maxwell instationnaires sur des maillages simplexes

Charles, Joseph 26 April 2012 (has links) (PDF)
Cette étude concerne le développement d'une méthode Galerkin discontinue d'ordre élevé en domaine temporel (DGTD), flexible et efficace, pour la résolution des équations de Maxwell instationnaires sur des maillages simplexes destructurés et reposant sur des schémas d'intégration en temps explicites. Les composantes du champ électromagnétique sont approximées localement par des méthodes d'interpolation polynomiale et la continuité entre éléments adjacents est renforcée de façon faible par un schéma centré pour le calcul du flux numérique à travers les interfaces du maillage. L'objectif de cette thèse est de remplir deux objectifs complémentaires. D'une part, améliorer la flexibilité de l'approximation polynomiale en vue du développement de méthodes DGTD p-adaptatives par l'étude de différentes méthodes d'interpolation polynomiale. Plusieurs aspects tels que la nature nodale ou modale de l'ensemble des fonctions de bases associées, leur éventuelle structure hiérarchique, le conditionnement des matrices élémentaires à inverser, les propriétés spectrales de l'interpolation ou la simplicité de programmation sont étudiés. D'autre part, augmenter l'efficacité de l'approximation temporelle sur des maillages localement raffinés en utilisant une stratégie de pas de temps local. Nous développerons finalement dans cette étude une méthodologie de calcul haute performance pour exploiter la localité et le parallélisme inhérents aux méthodes DGTD combinés aux capacités de calcul sur carte graphique. La combinaison de ces caractéristiques modernes résulte en une amélioration importante de l'efficacité et en une réduction significative du temps de calcul.
233

Analyse d'Erreurs d'Estimateurs des Dérivées de Signaux Bruités et Applications

Liu, Da-Yan 17 October 2011 (has links) (PDF)
Ce mémoire concerne la construction et l'analyse d'estimateurs robustes pour le calcul numérique des dérivés de signaux bruités et des paramètres de signaux sinusoïdaux bruités. Ces estimateurs, originalement introduits par Fliess, Mboup et Sira Ramirez, sont actuellement étudiés au sein de l'équipe projet NON-A de l'INRIA Lille Nord Europe. Pour une classe d'entre eux, nous les obtenons à partir de la réécriture dans le domaine opérationnel de Laplace des équations différentielles linéaires des signaux analysés. Par des manipulations algébriques simples dans l'anneau R(s)[d/ds] des polynômes différentiels en d/ds à coefficients rationnels en la variable opérationnelle s, nous montrons que ces estimateurs sont non-asymptotiques et que les estimations numériques obtenues, même en présence de bruits, sont robustes pour un faible nombre d'échantillons des signaux. Nous montrons, de plus, que ces propriétés sont vérifiées pour une large classe de type de bruits. Ces estimateurs exprimés dans le domaine temporel s'écrivent en général via des fractions d'intégrales itérées des signaux analysés. Dans la première partie du mémoire, nous étudions des familles d'estimateurs de dérivées obtenus par ces méthodes algébriques. Nous montrons que pour une classe d'entre eux, il est possible de les formuler directement en tronquant une série orthogonale de polynômes de Jacobi. Cette considération nous permet alors d'étendre à IR le domaine de définition des paramètres de ces estimateurs. Nous analysons ensuite l'influence de ces paramètres étendus sur l'erreur de troncature, qui produit un retard d'estimation dans le cas causal, puis sur l'erreur due aux bruits, considérés comme des processus stochastiques, et enfin sur l'erreur numérique de discrétisation des intégrales. Ainsi, nous montrons comment réduire le retard d'estimation et l'effet du aux bruits. Une validation de cette approche est réalisée par la construction d'un observateur non asymptotique de variables d'état d'un système non linéaire. Dans la deuxième partie de ce mémoire, nous construisons par cette approche algébrique des estimateurs des paramètres d'un signal sinusoïdal bruité dont l'amplitude varie avec le temps. Nous montrons que les méthodes classiques de fonctions modulatrices sont un cas particulier de cette approche. Nous étudions ensuite l'influence des paramètres algébriques sur l'erreur d'estimation due au bruit et l'erreur numérique d'intégration. Des majorations de ces erreurs sont données pour une classe d'estimateurs. Finalement, une comparaison entre ces estimateurs et la méthode classique de détection synchrone est réalisée pour démontrer l'efficacité de notre approche sur ce type de signaux.
234

Analyse de sensibilité et réduction de dimension. Application à l'océanographie

Janon, Alexandre 15 November 2012 (has links) (PDF)
Les modèles mathématiques ont pour but de décrire le comportement d'un système. Bien souvent, cette description est imparfaite, notamment en raison des incertitudes sur les paramètres qui définissent le modèle. Dans le contexte de la modélisation des fluides géophysiques, ces paramètres peuvent être par exemple la géométrie du domaine, l'état initial, le forçage par le vent, ou les coefficients de frottement ou de viscosité. L'objet de l'analyse de sensibilité est de mesurer l'impact de l'incertitude attachée à chaque paramètre d'entrée sur la solution du modèle, et, plus particulièrement, identifier les paramètres (ou groupes de paramètres) og sensibles fg. Parmi les différentes méthodes d'analyse de sensibilité, nous privilégierons la méthode reposant sur le calcul des indices de sensibilité de Sobol. Le calcul numérique de ces indices de Sobol nécessite l'obtention des solutions numériques du modèle pour un grand nombre d'instances des paramètres d'entrée. Cependant, dans de nombreux contextes, dont celui des modèles géophysiques, chaque lancement du modèle peut nécessiter un temps de calcul important, ce qui rend inenvisageable, ou tout au moins peu pratique, d'effectuer le nombre de lancements suffisant pour estimer les indices de Sobol avec la précision désirée. Ceci amène à remplacer le modèle initial par un emph{métamodèle} (aussi appelé emph{surface de réponse} ou emph{modèle de substitution}). Il s'agit d'un modèle approchant le modèle numérique de départ, qui nécessite un temps de calcul par lancement nettement diminué par rapport au modèle original. Cette thèse se centre sur l'utilisation d'un métamodèle dans le cadre du calcul des indices de Sobol, plus particulièrement sur la quantification de l'impact du remplacement du modèle par un métamodèle en terme d'erreur d'estimation des indices de Sobol. Nous nous intéressons également à une méthode de construction d'un métamodèle efficace et rigoureux pouvant être utilisé dans le contexte géophysique.
235

Analyse mathématique et approximation numérique des équations de Stokes et de Navier-Stokes avec des conditions aux limites non standard

Seloula, Nour El Houda 02 December 2010 (has links) (PDF)
Les travaux de la thèse portent sur la résolution des équations de Stokes, d'abord avec des conditions au bord portant sur la composante normale du champ de vitesse et la composante tangentielle du tourbillon, ensuite avec des conditions au bord portant sur la pression et la composante tangentielle du champ de vitesse. Dans chaque cas nous démontrons l'existence, l'unicité et la régularité de la solution. Nous traitons aussi le cas de solutions très faibles, par dualité. Le cadre fonctionnel que nous avons choisi est celui des espaces de Banach du type H(div) et H(rot) ou l'intersection des deux, basés sur l'espace Lp , avec 1 < p < ∞. En particulier, on se place dans des domaines non simplement connexes, avec des frontières non connexes. Nous nous intéressons en premier lieu à l'obtention d'inégalités de Sobolev pour des champs de vecteurs u ∈ Lp (Ω). Dans un second temps, nous établissons des résultats d'existence pour les potentiels vecteurs avec diverses conditions aux limites. Ceci nous permet d'abord d'effectuer des décompositions de type Helmholtz et ensuite de démontrer des conditions Inf − Sup lorsque la forme bilinéaire est un produit de rotationnels. Ces conditions aux limites font que l'équation de la pression est indépendante des autres variables. C'est la raison pour laquelle nous sommes naturellement conduit à étudier les problèmes elliptiques qui se traduisent par les systèmes de Stokes sans la pression. La résolution de ces problèmes se fait au moyen des Conditions Inf − Sup qui jouent un rôle clef pour établir l'existence et l'unicité de solutions. Nous donnons une applications aux systèmes de Navier-Stokes, où on obtient l'existence d'une solution en effectuant un point fi xe autour du problème d'Oseen. Enfi n, deux méthodes numériques sont proposées pour approcher le problème de Stokes. Nous analysons d'abord une méthode de Nitsche et puis une méthode de Galerkin discontinu. Quelques résultats numériques de convergence sont décrits qui sont parfaitement cohérents avec l'analyse.
236

Développement d'un algorithme multirésolution adaptatif tridimensionnel pour la résolution des équations aux dérivées partielles paraboliques. Application aux instabilités thermodiffusives de flamme.

Roussel, Olivier 24 March 2003 (has links) (PDF)
Le but de cette thèse est le développement d'un algorithme adaptatif pour la résolution des équations aux dérivées partielles paraboliques en géométrie cartésienne pour des problèmes en dimension un, deux et trois et l'application aux instabilités de flamme dans l'approximation thermodiffusive. Partant d'un schéma de discrétisation de type volumes finis explicite, nous appliquons une décomposition adaptative multi-résolution pour représenter la solution sur un maillage localement raffiné. Les flux numériques sont calculés directement sur la grille adaptative. Afin de suivre l'évolution de la solution au cours du temps, nous utilisons une stratégie d'adaptation dynamique basée sur la représentation des données en multi-résolution. Cette dernière consiste à représenter la solution à l'aide des valeurs sur une grille grossière, plus l'ensemble des différences de prédiction entre les valeurs d'une grille donnée et celles d'une grille plus fine, l'ensemble constistuant une hiérarchie de grilles emboîtées. La compression des données s'obtient en supprimant les différences inférieures à une certaine tolérance fixée. Nous validons cette méthode par la résolution numérique d'équations de référence, comme l'équation de convection-diffusion ou l'équation de Burgers diffusive, afin de montrer la précision de la méthode et son efficacité par rapport au même schéma volumes finis sur grille fine. En particulier, pour l'équation linéaire de convection-diffusion, nous donnons une relation entre la tolérance et le nombre d'échelles qui permet de réduire le temps de calcul et la place mémoire nécessaires tout en maintenant l'ordre de précision du schéma volumes finis. Ce résultat est confirmé par le calcul numérique. Nous utilisons ensuite la méthode adaptative pour étudier les instabilités de flammes pré-mélangées dans l'approximation thermodiffusive. En particulier, pour les flammes planes, nous déterminons la limite d'apparition des flammes pulsantes, limite que nous comparons aux données de la littérature, tant numériques que théoriques. Nos calculs confirment la théorie pour les grandes valeurs de l'énergie d'activation. Nous montrons également numériquement l'existence de flammes planes non-pulsantes lorsque la conduction de la chaleur est très supérieure à la diffusion des réactants. Nous étudions également les ballons de flamme et montrons que, lorsqu'ils interagissent avec une paroi adiabatique, leur comportement présente une analogie avec la capillarité en mécanique des fluides. Le dernier résultat concerne l'interaction d'un ballon de flamme avec un tourbillon. Il ouvre des perspectives sur la simulation adaptative des ballons de flamme dans un fluide en mouvement.
237

Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires, application aux cœurs des réacteurs nucléaires à caloporteur gaz.

Habibi, Zakaria 16 December 2011 (has links) (PDF)
Nos travaux concernent l'homogénéisation du transfert de chaleur dans un milieu poreux périodique qui modélise la géométrie d'un cœur de réacteur nucléaire à caloporteur gaz. Cette géométrie est constituée d'un milieu solide traversé par plusieurs longs et minces cylindres parallèles dont le diamètre est du même ordre que la période. La chaleur est transportée par conduction dans la partie solide du domaine et par conduction, convection et rayonnement dans la partie fluide (les cylindres). Le rayonnement est modélisé par une condition non-locale sur les parois des cylindres. C'est une analyse stationnaire qui correspond à un fonctionnement nominal du cœur, et aussi non-stationnaire qui correspond à un arrêt nor- mal du cœur. Pour obtenir le problème homogénéisé nous utilisons d'abord une analyse formelle par développement asymptotique à deux échelles. La justification mathématique de nos résultats est basée sur la méthode de convergence à deux échelles. Une caractéristique de ce travail en dimension 3 est qu'il combine l'analyse asymptotique par homogénéisation avec une analyse asymptotique par réduction de la dimension de l'espace 3D en 2D pour remédier à la non-périodicité de la condition de rayonnement suivant la direction axiale des cylindres. Une deuxième caractéristique de ce travail est l'étude de ce transfert de chaleur lorsqu'il contient une source thermique oscillante au niveau microscopique et un échange thermique entre les parties fluide et solide du cœur, dans un tel contexte, notre analyse numérique montre une contribution non-négligeable du correcteur dit d'ordre 2 qui nous aide à reproduire les gradients qui apparaissent entre la zone de la source thermique et la partie fluide (les cylindres).
238

Limites diffusives pour des équations cinétiques stochastiques

De Moor, Sylvain 11 June 2014 (has links) (PDF)
Cette thèse présente quelques résultats dans le domaine des équations aux dérivées partielles stochastiques. Une majeure partie d'entre eux concerne l'étude de limites diffusives de modèles cinétiques perturbés par un terme aléatoire. On présente également un résultat de régularité pour une classe d'équations aux dérivées partielles stochastiques ainsi qu'un résultat d'existence et d'unicité de mesures invariantes pour une équation de Fokker-Planck stochastique. Dans un premier temps, on présente trois travaux d'approximation-diffusion dans le contexte stochastique. Le premier s'intéresse au cas d'une équation cinétique avec opérateur de relaxation linéaire dont l'équilibre des vitesses a un comportement de type puissance à l'infini. L'équation est perturbée par un processus Markovien. Cela donne lieu à une limite fluide stochastique fractionnaire. Les deux autres résultats concernent l'étude de l'équation de transfert radiatif qui est un problème cinétique non linéaire. L'équation est bruitée dans un premier temps avec un processus de Wiener cylindrique et dans un second temps par un processus Markovien. Dans les deux cas, on obtient à la limite une équation de Rosseland stochastique. Dans la suite, on présente un résultat de régularité pour les équations aux dérivées partielles quasi-linéaires de type parabolique dont la partie aléatoire est gouvernée par un processus de Wiener cylindrique. Enfin, on étudie une équation de Fokker-Planck qui présente un terme de forçage aléatoire régi par un processus de Wiener cylindrique. On prouve d'une part l'existence et l'unicité des solutions de ce problème et d'autre part l'existence et l'unicité de mesures invariantes pour la dynamique de cette équation.
239

Matériaux aléatoirement renforcés de type Texsol : modélisation variationnelle par homogénéisation stochastique

Nait-Ali, Azdine 23 November 2012 (has links) (PDF)
Notre but est de proposer un modèle mathématique d'un matériau composite aléatoirement renforcé de type TexSol (un mélange sable-fil). Pour cela nous effectuons une étude asymptotique variationnelle afin d'obtenir une structure homogène et déterministe rendant compte du comportement mécanique de ce matériau. La stratégie de modélisation consiste à découper (suivant une direction x3) un cube de TexSol en fines plaques d'épaisseur h(ε) dépendant d'un très petit paramètre ε << 1. Pour h(ε) assez petit, nous supposerons que dans chaque plaque les fibres sont verticales. Notre problème initial est alors décomposé en n modèles de type plaque donnant une formulation 2-dimensionnelle après passage à la limite. Le modèle obtenu est déterministe. Puis, en utilisant ce résultat pour chacune des plaques, on obtient ainsi une énergie discrète (suivant x3), somme des n énergies 2-dimensionnelles homogènes et déterministes. Nous reconstruisons alors une structure 3D par une intégration variationnelle en x3, i.e. en passant à la limite en n de manière variationnelle. L'énergie limite, homogène et déterministe ainsi obtenue est proposée comme un modèle du TexSol. Nos différents résultats sont validés par une étude numérique.
240

Méthodes de réduction en dynamique explicite multi-échelles pour l'analyse des structures complexes sous impact

Faucher, Vincent 24 June 2003 (has links) (PDF)
Cette thèse pose les principes d'une utilisation de la réduction de modèle dans un contexte de décomposition de domaine en dynamique transitoire des structures. L'intégration temporelle est explicite, dédiée à la prise en compte de phénomènes rapides tels que des impacts. L'approche multi-domaines mise en oeuvre permet de découpler les échelles de temps entre les sous-domaines, par l'intermédiaire d'une gestion des incompatibilités de maillage aux frontières et d'une stratégie à plusieurs pas de temps. La réduction est introduite dans le formalisme de façon totalement générique via la projection de l'équilibre sur un sous-domaine donné sur une base modale locale et sans modification de l'algorithme générale, les opérateurs éléments finis initiaux étant remplacés par leur projection sur la base et les relations de continuité aux frontières entre les domaines étant reconstruites dans l'espace physique. La cas particulier de la non-linéarité géométrique issue de sous-domaines en vibration libres de blocage et subissant des rotations d'ensemble d'amplitude finie fait l'objet d'une analyse spécifique, aboutissant à une réduction à deux échelles. La connexion entre un sous-domaine ainsi projeté et les autres sous-domaines présentent des particularités au niveau du coût numérique du calcul des efforts d'interface, ce qui fait l'objet de l'élaboration d'une technique de résolution totalement nouvelle. La pertinence et les performances, en résolution séquentielle, du formalisme proposé sont illustrées sur des exemples issus de l'industrie en support de la thèse.

Page generated in 0.0713 seconds