• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 14
  • Tagged with
  • 34
  • 34
  • 10
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Contributions to functional inequalities and limit theorems on the configuration space / Inégalités fonctionnelles et théorèmes limites sur l'espace des configurations

Herry, Ronan 03 December 2018 (has links)
Nous présentons des inégalités fonctionnelles pour les processus ponctuels. Nous prouvons une inégalité de Sobolev logarithmique modifiée, une inégalité de Stein et un théorème du moment quatrième sans terme de reste pour une classe de processus ponctuels qui contient les processus binomiaux et les processus de Poisson. Les preuves reposent sur des techniques inspirées de l'approche de Malliavin-Stein et du calcul avec l'opérateur $Gamma$ de Bakry-Émery. Pour mettre en œuvre ces techniques nous développons une analyse stochastique pour les processus ponctuels. Plus généralement, nous mettons au point une théorie d'analyse stochastique sans hypothèse de diffusion. Dans le cadre des processus de Poisson ponctuels, l'inégalité de Stein est généralisée pour étudier la convergence stable vers des limites conditionnellement gaussiennes. Nous appliquons ces résultats pour approcher des processus Gaussiens par des processus de Poisson composés et pour étudier des graphes aléatoires. Nous discutons d'inégalités de transport et de leur conséquence en termes de concentration de la mesure pour les processus binomiaux dont la taille de l'échantillon est aléatoire. Sur un espace métrique mesuré quelconque, nous présentons un développement de la concentration de la mesure qui prend en compte l'agrandissement parallèle d'ensembles disjoints. Cette concentration améliorée donne un contrôle de toutes les valeurs propres du Laplacien métrique. Nous discutons des liens de cette nouvelle notion avec une version de la courbure de Ricci qui fait intervenir le transport à plusieurs marginales / We present functional inequalities and limit theorems for point processes. We prove a modified logarithmic Sobolev inequalities, a Stein inequality and a exact fourth moment theorem for a large class of point processes including mixed binomial processes and Poisson point processes. The proofs of these inequalities are inspired by the Malliavin-Stein approach and the $Gamma$-calculus of Bakry-Emery. The implementation of these techniques requires a development of a stochastic analysis for point processes. As point processes are essentially discrete, we design a theory to study non-diffusive random objects. For Poisson point processes, we extend the Stein inequality to study stable convergence with respect to limits that are conditionally Gaussian. Applications to Poisson approximations of Gaussian processes and random geometry are given. We discuss transport inequalities for mixed binomial processes and their consequences in terms of concentration of measure. On a generic metric measured space, we present a refinement of the notion of concentration of measure that takes into account the parallel enlargement of distinct sets. We link this notion of improved concentration with the eigenvalues of the metric Laplacian and with a version of the Ricci curvature based on multi-marginal optimal transport
22

Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-Vlasov

Chaudru de Raynal, Paul Éric 06 December 2013 (has links) (PDF)
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2.
23

Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-Vlasov

Chaudru de Raynal, Paul Éric 06 December 2013 (has links) (PDF)
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2.
24

Modeling and simulation in nonlinear stochastic dynamic of coupled systems and impact / Modélisation et simulation en dynamique stochastique non linéaire de systèmes couplés et phénomènes d’impact

De Queiroz Lima, Roberta 13 May 2015 (has links)
Dans cette Thèse, la conception robuste avec un modèle incertain d'un système électromécanique avec vibro-impact est fait. Le système électromécanique est constitué d'un chariot, dont le mouvement est excité par un moteur à courant continu et un marteau embarqué dans ce chariot. Le marteau est relié au chariot par un ressort non linéaire et par un amortisseur linéaire, de façon qu'un mouvement relatif existe entre eux. Une barrière flexible linéaire, placé à l'extérieur du chariot limite les mouvements de marteau. En raison du mouvement relatif entre le marteau et la barrière, impacts peuvent se produire entre ces deux éléments. Le modèle du système développé prend en compte l'influence du courant continu moteur dans le comportement dynamique du système. Certains paramètres du système sont incertains, tels comme les coefficients de rigidité et d'amortissement de la barrière flexible. L'objectif de la Thèse est de réaliser une optimisation de ce système électromécanique par rapport aux paramètres de conception afin de maximiser l'impact puissance sous la contrainte que la puissance électrique consommée par le moteur à courant continu est inférieure à une valeur maximale. Pour choisir les paramètres de conception dans le problème d'optimisation, une analyse de sensibilité a été réalisée afin de définir les paramètres du système les plus sensibles. L'optimisation est formulée dans le cadre de la conception robuste en raison de la présence d'incertitudes dans le modèle. Les lois de probabilités liées aux variables aléatoires du problème sont construites en utilisant le Principe du Maximum l'Entropie et les statistiques de la réponse stochastique du système sont calculées en utilisant la méthode de Monte Carlo. L'ensemble d'équations non linéaires sont présentés, et un solveur temporel adapté est développé. Le problème d'optimisation non linéaire stochastique est résolu pour différents niveaux d'incertitudes, et aussi pour le cas déterministe. Les résultats sont différents, ce qui montre l'importance de la modélisation stochastique / In this Thesis, the robust design with an uncertain model of a vibro-impact electromechanical system is done. The electromechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between them. A linear flexible barrier, placed outside of the cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The developed model of the system takes into account the influence of the DC motor in the dynamic behavior of the system. Some system parameters are uncertain, such as the stiffness and the damping coefficients of the flexible barrier. The objective of the Thesis is to perform an optimization of this electromechanical system with respect to design parameters in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. To chose the design parameters in the optimization problem, an sensitivity analysis was performed in order to define the most sensitive system parameters. The optimization is formulated in the framework of robust design due to the presence of uncertainties in the model. The probability distributions of random variables are constructed using the Maximum Entropy Principle and statistics of the stochastic response of the system are computed using the Monte Carlo method. The set of nonlinear equations are presented, and an adapted time domain solver is developed. The stochastic nonlinear constrained design optimization problem is solved for different levels of uncertainties, and also for the deterministic case. The results are different and this show the importance of the stochastic modeling
25

Modeling and simulation in nonlinear stochastic dynamic of coupled systems and impact / Modélisation et simulation en dynamique stochastique non linéaire de systèmes couplés et phénomènes d’impact

De Queiroz Lima, Roberta 13 May 2015 (has links)
Dans cette Thèse, la conception robuste avec un modèle incertain d'un système électromécanique avec vibro-impact est fait. Le système électromécanique est constitué d'un chariot, dont le mouvement est excité par un moteur à courant continu et un marteau embarqué dans ce chariot. Le marteau est relié au chariot par un ressort non linéaire et par un amortisseur linéaire, de façon qu'un mouvement relatif existe entre eux. Une barrière flexible linéaire, placé à l'extérieur du chariot limite les mouvements de marteau. En raison du mouvement relatif entre le marteau et la barrière, impacts peuvent se produire entre ces deux éléments. Le modèle du système développé prend en compte l'influence du courant continu moteur dans le comportement dynamique du système. Certains paramètres du système sont incertains, tels comme les coefficients de rigidité et d'amortissement de la barrière flexible. L'objectif de la Thèse est de réaliser une optimisation de ce système électromécanique par rapport aux paramètres de conception afin de maximiser l'impact puissance sous la contrainte que la puissance électrique consommée par le moteur à courant continu est inférieure à une valeur maximale. Pour choisir les paramètres de conception dans le problème d'optimisation, une analyse de sensibilité a été réalisée afin de définir les paramètres du système les plus sensibles. L'optimisation est formulée dans le cadre de la conception robuste en raison de la présence d'incertitudes dans le modèle. Les lois de probabilités liées aux variables aléatoires du problème sont construites en utilisant le Principe du Maximum l'Entropie et les statistiques de la réponse stochastique du système sont calculées en utilisant la méthode de Monte Carlo. L'ensemble d'équations non linéaires sont présentés, et un solveur temporel adapté est développé. Le problème d'optimisation non linéaire stochastique est résolu pour différents niveaux d'incertitudes, et aussi pour le cas déterministe. Les résultats sont différents, ce qui montre l'importance de la modélisation stochastique / In this Thesis, the robust design with an uncertain model of a vibro-impact electromechanical system is done. The electromechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between them. A linear flexible barrier, placed outside of the cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The developed model of the system takes into account the influence of the DC motor in the dynamic behavior of the system. Some system parameters are uncertain, such as the stiffness and the damping coefficients of the flexible barrier. The objective of the Thesis is to perform an optimization of this electromechanical system with respect to design parameters in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. To chose the design parameters in the optimization problem, an sensitivity analysis was performed in order to define the most sensitive system parameters. The optimization is formulated in the framework of robust design due to the presence of uncertainties in the model. The probability distributions of random variables are constructed using the Maximum Entropy Principle and statistics of the stochastic response of the system are computed using the Monte Carlo method. The set of nonlinear equations are presented, and an adapted time domain solver is developed. The stochastic nonlinear constrained design optimization problem is solved for different levels of uncertainties, and also for the deterministic case. The results are different and this show the importance of the stochastic modeling
26

Calcul fonctionnel non-anticipatif et applications aux processus stochastiques / Non-anticipative functional calculus and applications to stochastic processes

Lu, Yi 06 December 2017 (has links)
Cette thèse est consacrée à l’étude du calcul fonctionnel non-anticipatif, qui est basé sur la notion de dérivée verticale d'une fonctionelle. Nous étendons le cadre classique de ce calcul à des fonctionnelles ne possédant pas de dérivée directionnelle classique. Dans la première partie, nous montrons comment une classe importante de fonctionelles, définie par une espérance conditionnelle, peuvent être approchées de façon systématique par des fonctionnelles régulières. Dans la deuxième partie, nous introduisons une notion de dérivée verticale faible qui couvre une plus grande classe de fonctionnelles, et notamment toutes les martingales locales. Dans la première partie, nous nous sommes intéressés à la représentation d'une espérance conditionnelle par une fonctionnelle non-anticipative. L'idée est d'approximer ces fonctionnelles par une suite des fonctionnelles régulières dans un certain sens. Cette approche fournit une façon systématique d'obtenir une approximation explicite de la représentation des martingales pour une grande famille de fonctionnelles Browniennes. Nous obtenons également un ordre de convergence explicite. Quelques applications au problème de la couverture dynamique sont données à la fin de cette partie.Dans la deuxième partie, nous étendons la notion de dérivée verticale pour des fonctionnelles qui n'admettent pas nécessairement de dérivée directionnelle. Cette notion nous permet également d'obtenir une caractérisation fonctionnelle d'une martingale locale par rapport à un processus de référence fixé, ce qui donne lieu à une notion de solution faible pour des équations aux dérivées partielles dépendant de la trajectoire. / This thesis focuses on various mathematical questions arising in the non-anticipative functional calculus, which is based on a notion of pathwise directional derivatives for functionals. We extend the scope and results of this calculus to functionals which may not admit such derivatives, either through approximations (Part I) or by defining a notion of weak vertical derivative (Part II). In the first part, we consider the representation of conditional expectations as non-anticipative functionals. We show that it is possible under very general conditions to approximate such functionals by a sequence of smooth functionals in an appropriate sense. This approach provides a systematic method for computing explicit approximations to martingale representations for a large class of Brownian functionals. We also derive explicit convergence rates of the approximations. These results are then applied to the problem of sensitivity analysis and dynamic hedging of (path-dependent) contingent claims. In the second part, we propose a concept of weak vertical derivative for non-anticipative functionals which may fail to possess directional derivatives. The definition of the weak vertical derivative is based on the notion of pathwise quadratic variation and makes use of the duality associated to the associated bilinear form. We show that the notion of weak vertical derivative leads to a functional characterization of local martingales with respect to a reference process, and allows to define a concept of pathwise weak solution for path-dependent partial differential equations.
27

Évaluation de deux modèles de produits dérivés : pour le marché de l'électricité en Amérique du Nord

Beaudoin, Luc 12 April 2018 (has links)
Dans ce mémoire, nous adressons l'efficacité du marché financier de l'électricité en Amérique du Nord. Nous regardons spécifiquement la complexité des modèles à terme et la qualité de leurs prévisions. Nous concentrons notre étude sur deux modèles à terme, le modèle simple de Black et Scholes et un plus complexe, défini par Pilipovic. Nous regardons six marchés dans les États-Unis comme la MidColombia, le NP15, le ComEd, le Cinergy, le PJM et le NePool. La plage des données quotidiennes utilisées est de 1997 à 2002, soit pré et post Enron. Nous avons incorporé dans les modèles les propriétés stochastiques fondamentales associées aux prix à terme comme la diffusion de saut et moyenne inversée. Nous employons le facteur de corrélation pour étudier les modèles contre des prix passés et les données projetés. Nos résultats montrent que Black-Scholes est légèrement supérieur pour prévoir le prix court à terme. Les deux modèles ne sont pas appropriés pour l'évaluation à long terme. / In this thesis, we address the efficiency of the financial market of electricity in North America. We specifically look at the complexity of future models and the quality of the forecast. We focus our study on two future models, from a basic model, the Black-Scholes to a more complex, one defined by Pilipovic. We look at six markets in United-States as Mid-Colombia, NP15, ComEd, Cinergy, PJM and NePool. The daily data range from 1997 to 2 002, as pre and post Enron. We incorporated fundamental stochastic properties associated to spot and futures prices as jump diffusion and mean reversion. We use a correlation factor to define the fitness of the models against past and real prices. Our findings show that Black-Scholes is slightly better to foresee short term price. Both models are not appropriate for long term pricing.
28

Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-Vlasov / Stochastic differential equations : strong well-posedness of singular and degenerate equations; numerical analysis of decoupled forward backward systems of McKean-Vlasov type

Chaudru de Raynal, Paul Éric 06 December 2013 (has links)
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2. / This thesis deals with two subjects: the strong well-posedness of stochastic differential equations with Hölder drift and hypoelliptic noise and the simulation of decoupled forward backward stochastic differential equations of McKean-Vlasov type. In the first work, we study a class of degenerate system with hypoelliptic noise. We prove that strong well-posedness holds for this system when the drift is only H\"{o}lder, with Hölder exponent larger than the critical value 2/3. This work extends to the degenerate setting the earlier results obtained by Zvonkin (1974), Veretennikov (1980) and Krylov and Röckner (2005). The existence of a threshold for the Hölder exponent in the degenerate case may be understood as the price to pay to balance the degeneracy of the noise. Our proof relies on regularization properties of the associated PDE, which is degenerate in the current framework and is based on a parametrix method. In the second work, we propose a new algorithm to approach weakly the solution of a McKean-Vlasov stochastic differential equation. Based on the cubature method, the algorithm is deterministic differing from the usual methods based on interacting particles. It can be parametrized in order to obtain a given order of convergence. Then, we construct implementable algorithms to solve decoupled forward backward stochastic differential equations of McKean-Vlasov type, which appear in some stochastic control problems in a mean field environment. We give two algorithms and show that they have convergence of orders one and two under appropriate regularity conditions.
29

Voyage au coeur des EDSRs du second ordre et autres problèmes contemporains de mathématiques financières.

Possamaï, Dylan 12 December 2011 (has links) (PDF)
Cette thèse présente deux principaux sujets de recherche indépendants, le dernier étant décliné sous la forme de deux problèmes distincts. Dans toute la première partie de la thèse, nous nous intéressons à la notion d'équations différentielles stochastiques rétrogrades du second ordre (dans la suite 2EDSR), introduite tout d'abord par Cheredito, Soner, Touzi et Victoir puis reformulée récemment par Soner, Touzi et Zhang. Nous prouvons dans un premier temps une extension de leurs résultats d'existence et d'unicité lorsque le générateur considéré est seulement continu et à croissance linéaire. Puis, nous poursuivons notre étude par une nouvelle extension au cas d'un générateur quadratique. Ces résultats théoriques nous permettent alors de résoudre un problème de maximisation d'utilité pour un investisseur dans un marché incomplet, à la fois car des contraintes sont imposées sur ses stratégies d'investissement, et parce que la volatilité du marché est supposée être inconnue. Nous prouvons dans notre cadre l'existence de stratégies optimales, caractérisons la fonction valeur du problème grâce à une EDSR du second ordre et résolvons explicitement certains exemples qui nous permettent de mettre en exergue les modifications induites par l'ajout de l'incertitude de volatilité par rapport au cadre habituel. Nous terminons cette première partie en introduisant la notion d'EDSR du second ordre avec réflexion sur un obstacle. Nous prouvons l'existence et l'unicité des solutions de telles équations, et fournissons une application possible au problème de courverture d'options Américaines dans un marché à volatilité incertaine. Le premier chapitre de la seconde partie de cette thèse traite d'un problème de pricing d'options dans un modèle où la liquidité du marché est prise en compte. Nous fournissons des développements asymptotiques de ces prix au voisinage de liquidité infinie et mettons en lumière un phénomène de transition de phase dépendant de la régularité du payoff des options considérées. Quelques résultats numériques sont également proposés. Enfin, nous terminons cette thèse par l'étude d'un problème Principal/Agent dans un cadre d'aléa moral. Une banque (qui joue le rôle de l'agent) possède un certain nombre de prêts dont elle est prête à échanger les intérêts contre des flux de capitaux. La banque peut influencer les probabilités de défaut de ces emprunts en exerçant ou non une activité de surveillance coûteuse. Ces choix de la banque ne sont connus que d'elle seule. Des investisseurs (qui jouent le rôle de principal) souhaitent mettre en place des contrats qui maximisent leur utilité tout en incitant implicitement la banque à exercer une activité de surveillance constante. Nous résolvons ce problème de contrôle optimal explicitement, décrivons le contrat optimal associé ainsi que ses implications économiques et fournissons quelques simulations numériques.
30

Etude des EDS rétrogrades avec sauts et problèmes de gestion du risque

Kazi-Tani, Mohamed Nabil 10 December 2012 (has links) (PDF)
Cette thèse traite d'une part, de questions de gestion, de mesure et de transfert du risque et d'autre part, de problèmes d'analyse stochastique à sauts avec incertitude de modèle. Le premier chapitre est consacré à l'analyse des intégrales de Choquet, comme mesures de risque monétaires non nécessairement invariantes en loi. Nous établissons d'abord un nouveau résultat de représentation des mesures de risque comonotones, puis un résultat de représentation des intégrales de Choquet en introduisant la notion de distorsion locale. Ceci nous permet de donner ensuite une forme explicite à l'inf-convolution de deux intégrales de Choquet, avec des exemples illustrant l'impact de l'absence de la propriété d'invariance en loi. Nous nous intéressons ensuite à un problème de tarification d'un contrat de réassurance non proportionnelle, contenant des clauses de reconstitution. Après avoir défini le prix d'indifférence relatif à la fois à une fonction d'utilité et à une mesure de risque, nous l'encadrons par des valeurs facilement implémentables. Nous passons alors à un cadre dynamique en temps. Pour cela, nous montrons, en adoptant une approche par point fixe, un théorème d'existence de solutions bornées pour une classe d'équations différentielles stochastiques rétrogrades (EDSRs dans la suite) avec sauts et à croissance quadratique. Sous une hypothèse additionnelle classique dans le cadre à sauts, ou sous une hypothèse de convexité du générateur, nous établissons un résultat d'unicité grâce à un principe de comparaison. Nous analysons les propriétés des espérances non linéaires correspondantes. En particulier, nous obtenons une décomposition de Doob-Meyer des surmartingales non-linéaires ainsi que leur régularité en temps. En conséquence, nous en déduisons facilement un principe de comparaison inverse. Nous appliquons ces résultats à l'étude des mesures de risque dynamiques associées, sur une filtration engendrée à la fois par un mouvement brownien et par une mesure aléatoire à valeurs entières, à leur repésentation duale, ainsi qu'à leur inf-convolution, avec des exemples explicites. La seconde partie de cette thèse concerne l'analyse de l'incertitude de modèle, dans le cas particulier des EDSRs du second ordre avec sauts. Nous imposons que ces équations aient lieu au sens presque-sûr, pour toute une famille non dominée de mesures de probabilités qui sont solution d'un problème de martingales sur l'espace de Skorohod. Nous étendons d'abord la définition des EDSRs du second ordre, telles que définies par Soner, Touzi et Zhang, au cas avec sauts. Pour ce faire, nous démontrons un résultat d'agrégation au sens de Soner, Touzi et Zhang sur l'espace des trajectoires càdlàg. Ceci nous permet, entre autres, d'utiliser une version quasi-sûre du compensateur de la mesure des sauts du processus canonique. Nous montrons alors un résultat d'existence et d'unicité pour notre classe d'EDSRs du second ordre. Ces équations sont affectées par l'incertitude portant à la fois sur la volatilité et sur les sauts du processus qui les dirige.

Page generated in 0.0928 seconds