• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 43
  • Tagged with
  • 316
  • 316
  • 303
  • 302
  • 74
  • 74
  • 72
  • 60
  • 55
  • 39
  • 38
  • 35
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Liquid Chromatography-Mass Spectrometry as a Tool for Drug Metabolite Identification in Biological Fluids : With Application to Ketobemidone

Sundström, Ingela January 2007 (has links)
Electrospray ionization (ESI) mass spectrometry (MS) in combination with liquid chromatography (LC) is an excellent tool for the identification of drug metabolites. Utilizing this hyphenated technique in combination with proper sample pretreatment, the metabolic pathways of the analgesic drug ketobemidone were investigated in human urine and rat microdialysate from blood and brain. Two novel phase I metabolites (ketobemidone N-oxide and meta-hydroxymethoxyketobemidone) and three novel phase II metabolites (glucuronic acid conjugates of ketobemidone, norketobemidone and hydroxymethoxyketobemidone) were identified in human urine. Further, norketobemidone and ketobemidone N-oxide were identified in rat microdialysate from brain after regional distribution of ketobemidone in striatum. This indicates that the brain itself has the possibility to metabolize ketobemidone. Synthetic ketobemidone metabolites were used for comparison of retention times and tandem MS spectra with the possible metabolites recovered from the biological samples. The conjugated metabolites were identified by accurate mass measurements and tandem MS spectra of the aglycones. The accuracy of the estimated masses was better than 2.1 ppm for two out of three conjugates in presence of internal standard. On-line micro-SPE was successfully used for trapping and desalting of the microdialysates. The small SPE pre-column made it possible to inject approximately 100 times more sample on the analytical column compared to injection without pre-column. Selective trapping was demonstrated for the polar catechol amine metabolite, dihydroxyketobemidone, which forms covalent complexes with phenylboronic acid (PBA). A fluorinated silica type stationary phase was the only column out of several tested that was able to separate ketobemidone and all relevant phase I metabolites. Liquid chromatography and mass spectrometry are independently valuable tools in the field of analytical pharmaceutical chemistry. The present study showed that the combination of LC-MS, with its excellent selectivity and sensitivity, offers an outstanding tool in the qualitative analysis of drugs and metabolites in biological fluids.
232

Development of Methods for Phase System Characterization in Liquid Chromatography

Samuelsson, Jörgen January 2008 (has links)
The aim of this thesis is first and foremost to improve the fundamental knowledge of nonlinear and preparative separation theory by focusing on some of the remaining “white spots” on the theoretical chromatographic map. Secondly, the acquired knowledge is used to develop, validate and execute new methods for phase characterization in liquid chromatography. The methodology used in this thesis is a combination of experiments, fundamental nonlinear theory and systematic computer simulations. A fundamental knowledge of the molecular interactions between the compounds to be separated and the separation media requires the determination of adsorption isotherms over a broad concentration range to give a complete picture of all interactions in the separation system - weak as well as strong. In addition, such adsorption data is essential for optimization in preparative chromatography. For the first time, it has been experimentally shown that the injected molecules are not present in the detected peak when a small excess of molecules are injected into a chromatographic system equilibrated with a constant stream of identical molecules. Several experimental procedures for this method were developed such as (i) the optimal injection strategy and (ii) different labeling methods for visualizing the injected molecules. Remarkable phenomena in the single-component case, such as invisible peak deformation and deformed (invisible) frontal chromatograms, are reported, investigated, and explained. This phenomenon has asides from its future practical implementation, also a large didactic value. The accuracy of the ECP method is experimentally improved, and used to characterize the separation of protolytic compounds at different pH on modern commercially available silica and hybrid silica column packing materials. That investigation enables us to answer why basic compounds give a much more compact preparative peak profile at pH 11 than they yields at lower pH.
233

Surface Modified Capillaries in Capillary Electrophoresis Coupled to Mass Spectrometry : Method Development and Exploration of the Potential of Capillary Electrophoresis as a Proteomic Tool

Zuberovic, Aida January 2009 (has links)
The increased knowledge about the complexity of the physiological processes increases the demand on the analytical techniques employed to explore them. A comprehensive analysis of the entire sample content is today the most common approach to investigate the molecular interplay behind a physiological deviation. For this purpose a method that offers a number of important properties, such as speed and simplicity, high resolution and sensitivity, minimal sample volume requirements, cost efficiency and robustness, possibility of automation, high-throughput and wide application range of analysis is requested. Capillary electrophoresis (CE) coupled to mass spectrometry (MS) has a great potential and fulfils many of these criteria. However, further developments and improvements of these techniques and their combination are required to meet the challenges of complex biological samples. Protein analysis using CE is a challenging task due to protein adsorption to the negatively charged fused-silica capillary wall. This is especially emphasised with increased basicity and size of proteins and peptides. In this thesis, the adsorption problem was addressed by using an in-house developed physically adsorbed polyamine coating, named PolyE-323. The coating procedure is fast and simple that generates a coating stable over a wide pH range, 2-11. By coupling PolyE-323 modified capillaries to MS, either using electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation (MALDI), successful analysis of peptides, proteins and complex samples, such as protein digests and crude human body fluids were obtained. The possibilities of using CE-MALDI-MS/MS as a proteomic tool, combined with a proper sample preparation, are further demonstrated by applying high-abundant protein depletion in combination with a peptide derivatisation step or isoelectric focusing (IEF). These approaches were applied in profiling of the proteomes of human cerebrospinal fluid (CSF) and human follicular fluid (hFF), respectively. Finally, a multiplexed quantitative proteomic analysis was performed on a set of ventricular cerebrospinal fluid (vCSF) samples from a patient with traumatic brain injury (TBI) to follow relative changes in protein patterns during the recovery process. The results presented in this thesis confirm the potential of CE, in combination with MS, as a valuable choice in the analysis of complex biological samples and clinical applications.
234

Metabolic Studies with Liquid Separation Coupled to Mass Spectrometry

Allard, Erik January 2009 (has links)
Metabolism is the sum of all chemical processes with the purpose to maintain life, as well as enable reproduction, in a living organism. Through the study of metabolism, increased understanding of pharmacological mechanisms and diseases can be achieved. This thesis describes several ways of doing so, including targeted analysis of selected metabolites and investigations of systematic metabolic differences between selected groups through pattern recognition. A method for exploring metabolic patterns in urine samples after intake of coffee or tea was developed. The methodology was later used with the aim to find biomarkers for prostate cancer and urinary bladder cancer. Furthermore, a fully automated quantitative method was developed for concentration measurements of the double prodrug ximelagatran and its metabolites in pig liver. The method was then used to study the roll of active transporters in pig liver cells. Moreover, a fundamental study was conducted to investigate how monitoring of small, doubly charged analytes can improve the limit of detection and precision in a quantitative method. The techniques used for the experiments were liquid separation coupled to electrospray mass spectrometry. Extra efforts were made to make the separation and the ionization as compatible as possible to each other for increased quality of the collected data.
235

Electrospray Ionization Mass Spectrometry for Determination of Noncovalent Interactions in Drug Discovery

Benkestock, Kurt January 2008 (has links)
Noncovalent interactions are involved in many biological processes in which biomolecules bind specifically and reversibly to a partner. Often, proteins do not have a biological activity without the presence of a partner, a ligand. Biological signals are produced when proteins interact with other proteins, peptides, oligonucleotides, nucleic acids, lipids, metal ions, polysaccharides or small organic molecules. Some key steps in the drug discovery process are based on noncovalent interactions. We have focused our research on the steps involving ligand screening, competitive binding and ‘off-target’ binding. The first paper in this thesis investigated the complicated electrospray ionization process with regards to noncovalent complexes. We have proposed a model that may explain how the equilibrium between a protein and ligand changes during the droplet evaporation/ionization process. The second paper describes an evaluation of an automated chip-based nano-ESI platform for ligand screening. The technique was compared with a previously reported method based on nuclear magnetic resonance (NMR), and excellent correlation was obtained between the results obtained with the two methods. As a general conclusion we believe that the automated nano-ESI/MS should have a great potential to serve as a complementary screening method to conventional HTS. Alternatively, it could be used as a first screening method in an early phase of drug development programs when only small amounts of purified targets are available. In the third article, the advantage of using on-line microdialysis as a tool for enhanced resolution and sensitivity during detection of noncovalent interactions and competitive binding studies by ESI-MS was demonstrated. The microdialysis device was improved and a new approach for competitive binding studies was developed. The last article in the thesis reports studies of noncovalent interactions by means of nanoelectrospray ionization mass spectrometry (nanoESI-MS) for determination of the specific binding of selected drug candidates to HSA. Two drug candidates and two known binders to HSA were analyzed using a competitive approach. The drugs were incubated with the target protein followed by addition of site-specific probes, one at a time. The drug candidates showed predominant affinity to site I (warfarin site). Naproxen and glyburide showed affinity to both sites I and II. / QC 20100705
236

Improved Techniques for Protein Analysis Focusing on Membrane Proteins and Hydrophobic Peptides

Redeby, Theres January 2006 (has links)
In this thesis, the vital cell functions performed by integral membrane proteins (IMPs) are briefly discussed. Such proteins are under-represented in most protein studies due to the hydrophobic nature of IMPs, which seriously complicate their solubilization, sample handling, preparation, separation and analysis. Conventional analytical techniques include for example matrix-assisted laser desorption/ionization mass spectrometry (MALDIMS), capillary electrophoresis (CE) and reversed phase high-performance liquid chromatography (RP-HPLC). Presented here are methods and protocols, which have been developed especially for IMP and hydrophobic peptide analysis, using the abovementioned techniques. The fluorinated organic solvent hexafluoroisopropanol (HFIP) has previously been shown beneficial as an additive for solubilization of hydrophobic analytes, which are poorly soluble in commonly used organic solvents or water. In Papers I-IV, HFIP is successfully exploited as solvent for the investigated IMPs and peptides. The simple fabrication and the focusing effect of a new structured MALDI target plate are presented in Paper I. This target plate contains concentrating sample spots, specifically designed to provide increased sensitivity for hydrophobic protein and peptide MALDI-MS analysis. When replacing a regular steel target with this new structured MALDI plate, more than a five-fold increase in average sensitivity is achieved for HFIP solubilized hydrophobic peptides. The full-length IMP bacteriorhodopsin (BR) and a cyanogen bromide digest thereof are used as model samples for the development of sample handling procedures in Paper II, and the peptides were used for evaluation of the MALDI-target plate in Paper I. Furthermore, the CE separation of the peptides, fractionation onto the structured MALDI plate and following MS analysis is presented in Paper III. Nine of the ten theoretical BR peptides were detected using this method. A protocol for the purification and analysis of chloroplast membrane proteins from the green macroalga Ulva lactuca has been described in Paper IV. The highest protein yield was achieved when proteins were extracted in HFIP, directly from the chloroplasts. The MALDI-MS analysis of samples with and without previous RP-HPLC fractionation revealed proteins with molecular weights ranging between 1 and 376 kDa. In Paper V, a closed-open-closed CE system is presented, containing an open microchannel for off-line MALDI detection. The electroosmotic flow and band broadening of this system has been evaluated. / QC 20100916
237

Advances in analytical methodologies for studies of the platinum metallome in malignant cells exposed to cisplatin / Förbättrade analytiska metodologier för studier av platina-metallomet i maligna celler exponerade för cisplatin.

Nygren, Yvonne January 2010 (has links)
The scientific progress about the important chemotherapeutic drug substance cisplatin (CDDP) and its function has often been rendered by data difficult to interpret, and still many questions about its mode of action remains to be clarified by the scientific community. However, studies of CDDP possess a high complexity due to; i) low intracellular concentration, ii) many potential biomolecule targets, iii) poor or unknown stability of the intact drug and its biomolecule adducts and iv) complex and varying sample matrices. Metallomic studies, using advanced analytical techniques may contribute to clarify the interactions between CDDP and intracellular biomolecules. For a successful outcome sample preparation conditions as well as separation and detection techniques must be carefully selected and optimized to achieve accurate results and correct interpretation of data.         This thesis describes some new and improved analytical methodologies for characterizing the Pt metallome in CDDP-exposed malignant cells. The developed methods are based on powerful liquid chromatography (LC) methods hyphenated to sensitive detection by inductively coupled plasma- (ICP) and electrospray ionization mass spectrometry (ESIMS). Consideration has also been taken about sample preparation conditions.         By selecting “chemically inert” sample preparation (cell lysis by osmosis) and separation (using only nonreactive or no additatives) conditions we could avoid the formation of platinum artifact compounds previously described in the literature (Paper I and II). Using oxygen containing organic solvents with high boiling points (dimethylformamide; DMF, 1,4-dioxane, n-propanol and ethanol) as alternatives to acetonitrile in the LC separations, significant improvements were achieved in ICPMS sensitivity and robustness. When evaluated in combination with chromatographic performance and ESIMS detection the overall best performance was achieved with n-propanol (Paper II, III and IV). From the studies in Paper II we could show that free intact CDDP can be found in malignant cells, as supporting evidence for passive or endocytotic uptake of the drug and further estimate a half-life for intracellular CDDP to about 15 minutes. Such data has not been shown before. In Paper V, the above improved LC methods were used to demonstrate differences in the platinum and cupper metallome from sensitive and resistant T289 melanoma cells exposed to CDDP at near clinical levels.         In a wider perspective we have shown the potential of using hydrophilic liquid interaction chromatography (HILIC) hyphenated to ICPMS detection as a general approach for analysis of hydrophilic metallo-compounds (Paper II). Taking advantage of the superior ICPMS performance using n-propanol gradients for reversed phase liquid chromatography (RPLC) possess a true alternative and /or complimentary technique to size exclusion chromatography (SEC) commonly applied within metallomic studies of biomolecules (Paper V). Using n-propanol in HILIC as well as in RPLC enables parallel detection by ICP- and ESIMS using only one set of chromatographic parameters (Paper III and IV), something commonly called for by scientists in the field.
238

New methods for sensitive analysis with nanoelectrospray ionization mass spectrometry

Ek, Patrik January 2010 (has links)
In this thesis, new methods that address some current limitations in nanoelectrospray mass spectrometry (nESI-MS) analysis are presented. One of the major objectives is the potential gain in sensitivity that can be obtained when employing the proposed techniques. In the first part of this thesis, a new emitter, based on the generation of electrospray from a spray orifice with variable size, is presented. Electrospray is generated from an open gap between the edges of two individually mounted, pointed tips. The fabrication and evaluation of two different types of such emitters is presented; an ESI emitter fabricated from polyethylene terephtalate (Paper I), and a high-precision silicon device (Paper II). Both emitters were surface-treated in a selective way for an improved wetting of the gap and to confine the sample solution into the gap. In the second part of this thesis, different methods for improved sensitivity of nESI-MS analysis have been developed. In Paper III, a method for nESI-MS analysis from discrete sample volumes down to 1.5 nL is presented, using commercially available nESI needles. When analyzing attomole amounts of analyte in such a small volume of sample, an increased sensitivity was obtained, compared to when analyzing equal amounts in conventional nESI-MS analysis. To be able to analyze smaller sample volumes, needles with a narrower orifice and a higher flow resistance were needed. This triggered the development of a new method for fabrication of fused silica nESI needles (Paper IV). The fabrication is based on melting of a fused silica capillary by means of a rotating plasma, prior to pulling the capillary into a fine tip. Using the described technique, needles with sub-micrometer orifices could be fabricated. Such needles enabled the analysis of sample volumes down to 275 pL, and a further improvement of the sensitivity was obtained. In a final project (Paper V), nESI-MS was used to study the aggregation behavior of Aβ peptides, related to Alzheimer’s disease. An immunoprecipitation followed by nESI-MS was employed. This technique was also utilized to study the selectivity of the antibodies utilized. / QC 20101112
239

Färgkomponenter som avgår vid bandlackering / Coil coating paint components that are released during cure

Weijland, Elin, Rindberg, Therese January 2009 (has links)
På SSAB i Borlänge har man upptäckt att avgaser från färgen förorenar ugnarna vid härdning. Avgaserna består av lösningsmedel och andra flyktiga föreningar som sedan förkolnas och faller ner på lackerade plåtband. För att komma runt det här problemet har SSAB tillsammans med Akzo Nobel Industrial Finishes AB, i Gamleby, tillverkat en färg som inte ska ge ifrån sig något lösningsmedel och på så sätt minska bildandet av föroreningar i ugnarna. Färgen heter NOVA GreenCoat och innehåller rapsmetylester, RME, som är ett reaktivt lösningsmedel och ska binda till bindemedlet i färgen och på så sätt hindras från att avgå vid härdning. Syftet har varit att undersöka om en viss metod fungerar bra för att samla upp avgaser vid härdning. Avgaserna analyserades med GC-MS och härdningen studerades med FTIR. Arbetet har utförts både i Borlänge och i Gamleby. Metoden för uppsamling av avgaserna visade sig fungera, dock inte särskilt effektivt. Den skulle därför behöva optimeras. Härdningen kunde till viss del följas med hjälp av FTIR. Förändring i IR-spektrumet syntes för hydroxyltoppen vid cirka 3500 cm-1. En skillnad kunde ses för en topp vid 2858 cm-1 som uppkom i det ohärdade materialet innehållande RME, men den försvann under härdning. Toppen ökade med ökad mängd RME och syntes inte alls för de prover som inte innehöll RME. Samtliga gjorda analyser indikerade att RME avgick vid härdning. Vid analys med GC-MS kunde de föreningar som avgick från RME identifieras som: metyl-14-metyl pentadekanoat och/eller metyl hexadekanoat, olika former av metyl oktadekanoat samt olika former av metyl eikosanoat. Andra föreningar från klarlacken som avgick var lösningsmedel x och y samt i två av proverna hexametoximetylmelamin, HMMM. / Problems with exhaust gases from paint that contaminates the ovens have been discovered at SSAB in Borlänge.  The exhaust gases contain solvents and other volatiles that vaporize from the paint and later on carbonize and fall down on the next coming sheets. SSAB and Akzo Nobel Industrial Finishes AB have developed a paint that is not supposed to vaporize any solvents and therefore reduce the contaminations of the ovens. The paint is called NOVA GreenCoat and contains rapeseed methyl ester, RME. RME is a reactive solvent that is supposed to react with the binder in the paint and therefore be prevented from leaving during thermal cure. The purpose was to investigate whether a specific method worked well, for collecting the exhaust gases during thermal cure, or not. The collected exhaust gases were analyzed by using GC-MS and the cure was studied with FTIR. The work was executed both in Borlänge and Gamleby. The method for collecting the exhaust gases worked, unfortunately it wasn’t particularly effective. It therefore needs to be optimized. The cure could partially be studied by using FTIR. Changes in the IR-spectrum could be followed by looking at the hydroxyl peak at approximately 3500 cm-1. A certain difference was observed for a peak at 2858 cm-1 that appeared in the uncured material containing RME. The peak disappeared during cure. It increased with increased amount of RME and could not be observed at all for the samples that did not contain RME. All the analyzed samples indicated that RME vaporize during cure. When analyzed with GC-MS the volatiles that vaporize from RME were identified as: hexadecanoic acid methyl ester and/or penta decanoic acid methyl-14-methyl ester, different forms of octadecanoic acid methyl ester and different forms of eicosanoic acid methyl ester. Other volatiles that vaporize from NOVA GreenCoat were solvent x and solvent y and for two of the samples hexa metoxy methyl melamine, HMMM, was also found.
240

Quantitative Bioanalysis : Liquid separations coupled to targeted mass spectrometric measurements of bioactive compounds

Arvidsson, Björn January 2008 (has links)
Performing quantitative analysis of targeted bioactive compounds in biological samples, such as blood plasma, cerebrospinal fluid or extracts from pig liver, put high demands on the ruggedness of the method acquiring the results. In addition to the complexity of the sample matrix, the bioactive compounds targeted for analysis usually have low levels of natural abundance, further increasing the demand on the analytical method sensitivity. Furthermore, quantitation of analytes at trace levels in the presence of large amounts of interfering species in biofluids must aim for repeatable precision, high accuracy ensuring the closeness to the true values, a linear response spanning over several orders of magnitude and low limits of quantitation to be valid for monitoring disease states in clinical analysis. An analytical method most commonly follow a certain order of events, called the analytical chain, which includes; experimental planning, sampling, sample pre-treatment, separation of species, detection, evaluation, interpretation and validation, all equally important for the outcome of the results. In this thesis, the scope has been to create novel methods, or to refine already existing methods, in order to achieve even better performances of the different events in the analytical chain. One of the aspects has been to sample and enrich analytes in vivo by the use of solid supported microdialysis, giving the advantage of almost real-time monitoring of analyte levels within a living host with targeted selectivity due to the analyte affinity for solid particles. Another aspect to selectively clean and enrich analytes in a complex matrix has been developed and automated on-line by the use of a column-switching technique before the analytical separation. By using several steps of extraction and separation coupled on-line to selected detection by the use of a triple quadrupole mass spectrometer facilitates great selectivity of species. The mass spectrometer also gives the ability to distinguish between isotopically labelled analogues coeluting with the analytes yielding the necessary accuracy for quantitative evaluation. Both development of analytical methods and clinical applications has been performed, as well as improvements of existing techniques, all to improve the quantitation of trace levels of targeted analytes in biofluids.

Page generated in 0.0853 seconds