11 |
Intelligent control and system aggregation techniques for improving rotor-angle stability of large-scale power systemsMolina, Diogenes 13 January 2014 (has links)
A variety of factors such as increasing electrical energy demand, slow expansion of transmission infrastructures, and electric energy market deregulation, are forcing utilities and system operators to operate power systems closer to their design limits. Operating under stressed regimes can have a detrimental effect on the rotor-angle stability of the system. This stability reduction is often reflected by the emergence or worsening of poorly damped low-frequency electromechanical oscillations. Without appropriate measures these can lead to costly blackouts. To guarantee system security, operators are sometimes forced to limit power transfers that are economically beneficial but that can result in poorly damped oscillations. Controllers that damp these oscillations can improve system reliability by preventing blackouts and provide long term economic gains by enabling more extensive utilization of the transmission infrastructure.
Previous research in the use of artificial neural network-based intelligent controllers for power system damping control has shown promise when tested in small power system models. However, these controllers do not scale-up well enough to be deployed in realistically-sized power systems. The work in this dissertation focuses on improving the scalability of intelligent power system stabilizing controls so that they can significantly improve the rotor-angle stability of large-scale power systems.
A framework for designing effective and robust intelligent controllers capable of scaling-up to large scale power systems is proposed. Extensive simulation results on a large-scale power system simulation model demonstrate the rotor-angle stability improvements attained by controllers designed using this framework.
|
12 |
The role of location of low inertia in power systemsAlahmad, Bashar January 2021 (has links)
The plans to reduce the energy-related greenhouse gas emissions stimulate the deployment of electronically interfaced renewable resources. The increased penetration of such intermittent sources together with phasing conventional power plants out and the installation of High Voltage Direct Current (HVDC) links for long-distance more efficient transmission, reduces the stored inertia in any electrical grid. This leads to a more vulnerable power system and increases the significance of studying the corresponding stability aspects. Decreasing the inertial response of a power system deteriorates the quality of both frequency and rotor-angle stability which are the dynamics of interest in this study. The thesis explores the role of the location of low inertia on varying the power system’s dynamics. This is to be conducted in isolation of all other factors that could affect the study outcomes, such as dealing with the same system’s inertia value upon lowering the inertia in different locations. To accomplish this objective, it is essential to analyze the inertia distribution of the examined power system following the alterations of inertia reduction location. Accordingly, an inherently previous work methodology, that estimates the relative distance of the system’s components to Center Of Inertia (COI), is utilized throughout this study. Both frequency response and small-signal stability are analyzed in light of the inertia distribution results. The thesis examines two different power systems, a small two-area model and a bigger more realistic power system. The former model, known as Kundur model, helps in building a conceptual process to apply the methodology and to benchmark the dynamics of interest. While the latter is a reduced model of the Swedish transmission grid, known as Nordic 32 model. Different scenarios of low inertia are considered to capture the current trend of integrating more Renewable Energy Sources (RES) and phasing out more conventional plants. DIgSILENT Powerfactory is the weapon of choice in this study. It is utilized to assess both the frequency stability by performing electromechanical transients’ simulations, and small-signal stability following modal analysis simulations. Results show that the alterations of low inertia location are associated with variations in Instantaneous Frequency Deviation (IFD), Rate Of Change Of Frequency (ROCOF) and the damping ratio of the most critical inter-area oscillation mode. These variations have different levels of significance. Variations of the latter two metrics have the most considerable effects from the stability’s perspective. They can be utilized to prioritize the phasing out process of the conventional power plants, and to choose one of the scenarios of a specific low inertia location over the others. This helps in fulfilling proper long-term planning and short-term operation from the system operator’s perspective.
|
13 |
Optimization of Electromechanical Studies for the Connection of Hydro GenerationGROULT, Mathieu January 2018 (has links)
The current model for electricity generation is based on power plants connected to the transmission network. This provides electricity to the distribution network and after that to the consumers. To ensure the security of the electrical network and prevent a blackout, the performance of every electricity generation unit connected to the network is quantified in grid codes. In the case of the French transmission system, the requirements regarding the performance are written in a document produced by the French Transmission System Operator (TSO). Various events with various configurations of connection to the network have to be simulated and the corresponding performance has to be evaluated. The aim of these simulations is to determine the stability of the generators and key elements, including the response time on the active power after events such as a short circuit.Taking into account the amount of generators connected to the transmission network, the need for optimization appears and is the purpose of this Master Thesis. To perform those simulations in an efficient way on all the generators owned by the main French electricity producer, EDF, this Master Thesis contributes with a tool called AuDySim coded with the softwares MATLAB and EUROSTAG. The implemented tool allows the user to configure an electricity generation unit before realizing all the simulations specified by the TSO and produces a report containing the results by means of curves and data. The simulations and the production of the report are achieved automatically to create a gain of time and resources.In order to validate the performance of the tool, two case studies are performed on different types of power plants. The two case studies analyzed present a hydraulic and a nuclear power plant. In the results the performance of each type of power plant is assessed focusing on the rotor angle stability of the machine and key elements, such as the voltage and the active power. These results lead to the conclusion that AuDySim fulfills its mission, by achieving automatically an analysis of the performance of an electrical generation unit and producing it in a report. / Den nuvarande elproduktionsmodellen baseras på kraftverk som är direktkopplade till stamnätet. Stamnätet i sin tur matar distributionsnätet som därefter levererar el till slutkonsumenterna. För att säkerställa stamnätets integritet samt säkerhet och undvika strömavbrott kvantifieras prestandan hos varje generator som är ansluten till det med hjälp av nätkoder. När det gäller det franska stamnätet skrivs prestandakraven i ett dokument som utfärdas av den franska transmissionssystemoperatören (TSO). Olika händelser med olika anslutningskonfigurationer måste simuleras där dess prestanda ska utvärderats. Syftet med dessa simuleringar är att identifiera stabiliteten vid varje elproduktionsenhet med bl. a. dess reaktionstid för den aktiva effekten efter kortslutningar.Med tanke på antalet generatorer som är anslutna till stamnätet framträder ett behov för överföringsoptimering vilket är syftet med detta examensarbete. För att utföra dessa simuleringar på ett effektivt sätt på alla generatorer som ägs av den ledande franska elproducenten, EDF, bidrar denna avhandling med ett verktyg som heter AuDySim kodat i mjukvarorna MATLAB och EUROSTAG. Verktyget gör det möjligt för användaren att konfigurera en elproduktionsenhet innan man utför alla simuleringar som specificeras av TSO:n och samtidigt producerar en rapport som innehåller grafisk- och data resultat. Både simuleringar och rapporten produceras automatiskt för att optimera en bearbetningstid och resursanvändning.För att validera verktygets prestanda utförs två fallstudier på olika typer av kraftverk. De två fallstudierna fokuserar på ett hydraulisk- respektive ett kärnkraftverk. I resultaten utvärderas prestanda för varje typ av kraftverk, med fokus på maskinens rotorvinkelstabilitet och andra viktiga faktorer, såsom spänning och aktiv effekt. Resultat leder till slutsatsen att AuDySim uppfyller sitt uppdrag genom att automatiskt analysera prestanda hos en elektrisk generationsenhet och presentera analysen i en rapport.
|
14 |
Grid Scale Storage Placement In Power SystemsBodegård, Andreas January 2022 (has links)
The increasing amount of renewable energy sources is applying more and more pressure on today’s power system. Additionally, plannable sources of energy, which are mostly non-renewable, are being decommissioned at a high rate to combat climate change. The decommissioning of non-renewable producers and the increasing number of intermittent sources of energy are causing an increasingly volatile power system. In addition to the lack of plannable production, the inertia from synchronously rotating machines is decreasing due to the lack of contribution from renewable sources. The inertia of a power system assists in slowing down large frequency changes. When a notably large difference between production and consumption occurs in a power system with low inertia, components which can quickly counteract these effects by supplying the system with active power, are needed. The low inertia can also cause problems to the synchronicity of the synchronously rotating machines in the system, namely the rotor angle stability. A lack of rotorangle stability can cause the synchronicity of the synchronously rotating machines to be questioned. Fast frequency response units supply the power system with active power for a short period of time to reduce the rate of change of frequency and frequency deviation, which in turn allows the self-regulating units more time to adjust their production. Furthermore, these units can improve rotor angle stability. Such units can consist of batteries which are both serially and parallel connected with their associated control unit. This thesis aims to, with the help of the power system analysis program PowerFactory, and its associated dynamic simulation tools, formulate a methodology which can be used in power system models to locate the best placement for fast frequency response units. The results show that the formulated methodology can be used to find the best position of fast frequency response units for frequency deviation-, rate of change of frequency- and rotor angle stability support.
|
15 |
Contribution à la modélisation et à la commande de robots mobiles reconfigurables en milieu tout-terrain : application à la stabilité dynamique d'engins agricoles / Contribution to the modeling and to the control of reconfigurable mobile robots in off-road environments : application to the dynamic stability of agricultural machineryDenis, Dieumet 07 April 2015 (has links)
La thématique étudiée dans ce mémoire est axée sur la préservation de la stabilité dynamique de véhicules évoluant en environnement naturel. En effet, la mobilité en milieu tout-terrain est une activité particulièrement pénible et dangereuse en raison de la nature difficile de l'environnement de conduite et de la reconfigurabilité des machines. Le caractère changeant et incertain des interactions rencontrées entre des véhicules à dynamique complexe et variable et leur environnement entraîne régulièrement des risques accrus de renversement et/ou de perte de contrôle (dévalement, dérapage déclenché par une perte soudaine d'adhérence) pour le conducteur. Une forte accidentalité mortelle est, en effet, recensée dans ce secteur, en particulier, dans le milieu agricole ou le renversement de véhicule est classé comme étant la première cause de mortalité au travail. A l'heure actuelle, les approches existantes sur la stabilité d'engins agricoles sont qualifiées à juste titre de passives car elles ne permettent pas d'éviter que les accidents ne se produisent. Par ailleurs, la transposition directe des solutions de sécurité active du secteur de l'automobile (ABS, ESP) s'est révélée inadaptée aux véhicules tout-terrain a cause des hypothèses simplificatrices (routes plates et homogènes, conditions d'adhérence constantes, etc.) dont souffre la conception de ces dispositifs. Ainsi, le développement de systèmes actifs de sécurité prenant en compte les spécificités de la conduite en milieu tout-terrain se révèle être la meilleure voie d'amélioration à suivre. Eu égard à ces circonstances, ce projet se propose d'adresser cette problématique en étudiant des métriques de stabilité pertinentes permettant d'estimer et d'anticiper en temps réel les risques afin de permettre des actions correctives pour la préservation de l'intégrité des machines tout-terrain. Afin de faciliter l'industrialisation du dispositif actif de sécurité conçu, l'une des contraintes sociétales et commerciales de ce projet a été l'utilisation de capteurs compatibles avec le coût des machines visées. L'objectif ambitieux de cette étude a été atteint par différentes voies. En premier lieu, une approche de modélisation multi-échelle a permis de caractériser l'évolution dynamique de véhicules en milieu tout-terrain. Cette approche à dynamique partielle a offert l'avantage de développer des modèles suffisamment précis pour être représentatifs du comportement réel de l'engin mais tout en présentant une structure relativement simple permettant la synthèse d'asservissements performants. Puis, une étude comparative des avantages et des inconvénients des trois grandes familles de métriques répertoriées dans la littérature a permis de mettre en exergue l'intérêt des métriques analytiques à modèle dynamique par rapport aux catégories de critères de stabilité dits statiques et empiriques. Enfin, l'analyse approfondie des métriques dynamiques a facilité le choix de trois indicateurs (Lateral and Longitudinal Load Transfer (LLT), Force Angle Stability Measurement (FASM) et Dynamic Energy Stability Measurement (DESM)) qui sont représentatifs d'un risque imminent de renversement du véhicule. La suite du mémoire s'appuie sur la théorie d'observation pour l'estimation en ligne des variables non directement mesurables en milieu tout-terrain telles que les rigidités de glissement et dérive du pneumatique. Jumelée aux différents modèles dynamiques du véhicule, la synthèse d'observateurs a permis donc d'estimer en temps réel les efforts d'interaction pneumatiques-sol nécessaires à l'évaluation des indicateurs d'instabilité. Le couplage de ces modèles multi-échelles à la théorie d'observation a ainsi constitué un positionnement original à même de briser la complexité de la caractérisation de la stabilité de véhicules à dynamiques complexes et incertaines. (...) / This work is focused on the thematic of the maintenance of the dynamic stability of off-road vehicles. Indeed, driving vehicles in off-road environment remains a dangerous and harsh activity because of the variable and bad grip conditions associated to a large diversity of terrains. Driving difficulties may be also encountered when considering huge machines with possible reconfiguration of their mechanical properties (changes in mass and centre of gravity height for instance). As a consequence, for the sole agriculture sector, several fatal injuries are reported per year in particular due to rollover situations. Passive protections (ROllover Protective Structure - ROPS) are installed on tractors to reduce accident consequences. However, protection capabilities of these structures are very limited and the latter cannot be embedded on bigger machines due to mechanical design limitations. Furthermore, driving assistance systems (such as ESP or ABS) have been deeply studied for on-road vehicles and successfully improve safety. These systems usually assume that the vehicle Center of Gravity (CG) height is low and that the vehicles are operating on smooth and level terrain. Since these assumptions are not satisfied when considering off-road vehicles with a high CG, such devices cannot be applied directly. Consequently, this work proposes to address this research problem by studying relevant stability metrics able to evaluate in real time the rollover risk in order to develop active safety devices dedicated to off-road vehicles. In order to keep a feasible industrialization of the conceived active safety device, the use of compatible sensors with the cost of the machines was one of the major commercial and societal requirements of the project. The ambitious goal of this study was achieved by different routes. First, a multi-scale modeling approach allowed to characterize the dynamic evolution of off-road vehicles. This partial dynamic approach has offered the advantage of developing sufficiently accurate models to be representative of the actual behavior of the machine but having a relatively simple structure for high-performance control systems. Then, a comparative study of the advantages and drawbacks of the three main families of metrics found in the literature has helped to highlight the interest of dynamic stability metrics at the expense to categories of so-called static and empirical stability criteria. Finally, a thorough analysis of dynamic metrics has facilitated the choice of three indicators (Longitudinal and Lateral Load Transfer (LLT), Force Angle Stability Measurement (FASM) and Dynamic Energy Stability Measurement (DESM)) that are representative of an imminent rollover risk. The following of the document is based on the observation theory for estimating online of variables which are not directly measurable in off-road environment such as slip and cornering stiffnesses. Coupled to the dynamic models of the vehicle, the theory of observers has helped therefore to estimate in real time the tire-soil interaction forces which are necessaries for evaluating indicators of instability. The coupling of these multiscale models to the observation theory has formed an original positioning capable to break the complexity of the characterization of the stability of vehicles having complex and uncertain dynamics. (...)
|
Page generated in 0.0538 seconds