21 |
Chiral description and physical limit of pseudoscalar decay constants with four dynamical quarks and applicability of quasi-Monte Carlo for lattice systemsAmmon, Andreas 10 June 2015 (has links)
In dieser Arbeit werden Massen und Zerfallskonstanten von pseudoskalaren Mesonen, insbes. dem Pion und dem D-s-Meson, im Rahmen der Quantenchromodynamik (QCD) berechnet. Diese Größen wurden im Rahmen der Gitter-QCD, einer gitter-regularisierten Form der QCD, mit vier dynamischen Twisted-Mass Fermionen (Up-, Down-, Strange- und Charm-Quark) berechnet. Dieses Setup bieten den Vorteil der automatischen O(a)-Verbesserung. Der Gitterabstand a wurde mit Hilfe der Pion-Masse und -Zerfallskonstante durch Extrapolation zum physikalischen Punkt, geg. durch das physikal. Verhältnis von f_pi/M_pi, bestimmt. Dabei kamen Formeln aus der chiralen Störungstheorie, die die speziellen Diskretisierungseffekte des Twisted-Mass-Formalismus berücksichtigen, zum Einsatz. Die bestimmten Werte des Gitterabstands, a=0.0899(13) fm (@ beta=1.9), a=0.0812(11) fm (@ beta=1.95) und a = 0.0624(7) fm (@beta=2.1) liegen etwa fünf Prozent über denen vorheriger Bestimmungen (Baron et. al. 2010). Dies erklärt sich vor allem durch eine Untersuchung bezüglich der Anwendbarkeit des Bereiches der Up-/Down-Quark-Massen auf die verwendeten Extrapolationsformeln. Zur Untersuchung des physikalischen Grenzwertes von f_{D_s} werden Formeln der chiralen Störungstheorie für schwere Mesonen (HM-ChiPT) eingesetzt. Das Endergebnis dieser Betrachtung f_{D_s} = 248.9(5.3) MeV liegt etwas über vorherigen Bestimmungen (ETMC 2009, arXiv:0904.095. HPQCD 2010, arXiv:1008.4018) und etwa zwei Standardabweichungen unter dem Mittel aus experimentellen Werten (PDG 2012). Ein weiterer Teil dieser Arbeit behandelt die i.A. schwierige Berechnung von unverbundenen Beiträgen, die z.B. bei der Berechnung der Masse des neutralen Pions eine Rolle spielen. In dieser Arbeit wird eine neue Methode zur Approximation solcher Beiträge vorgestellt, welche auf der sog. Quasi-Monte-Carlo-Methode (QMC-Methode) beruht. Diese Methode birgt große Möglichkeiten zu enormen Einsparungen der Rechenzeit. / This work deals with the determination of decay constants and masses of the pion and D-s meson. This happens in the framework of lattice QCD, a lattice regularised form of QCD. The four dynamical fermions (up, down, strange and charm quark) are described by the twisted-mass approach (TM-QCD) featuring automatic O(a) improvement. The lattice spacing a has been determined using the pion mass and decay constant extrapolated to the physical point, which is determined by the physical ratio f_pi/m_pi. In order to obtain an accurate description, new formulae from Chi-PT, taking into account the special form of discretisation effects of TM-QCD have been employed. The determined results of a = 0.0899(13) fm (@ beta=1.9), a = 0.0812(11)fm (@ beta=1.95) and a = 0.0624(7) fm (@ beta=2.1) are approximately 5% larger than previous determinations (Baron et. al. 2010). This shift is most likely explained by the reduced range of pion masses (
|
22 |
Résolution de l’équation de transport de Boltzmann pour les phonons et applications / Solving Boltzmann transport equation for phonons and applicationsHamzeh, Hani 13 December 2012 (has links)
Cette thèse est consacrée à l’étude de la dynamique et du transport des phonons via la résolution de l’équation de transport de Boltzmann (ETB) pour les Phonons. Un ‘solveur’ Monte Carlo dédié à la résolution de l’ETB des phonons dans l’espace réciproque, prenant en compte tous les processus d’interactions Normaux et Umklapp à trois-phonons, est proposé. Une prise en compte rigoureuse des lois de conservation de l’énergie et de la quantité de mouvement est entreprise. Des relations de dispersion réalistes, intégrant tous les modes de polarisations, sont considérées. Le calcul des taux d’interactions à trois-phonons de tous les processus Normaux et Umklapp est effectué en utilisant l’approche théorique due à Ridley qui ne nécessite qu’un unique paramètre semi-ajustable pour chaque mode de polarisation, nommément : le coefficient de couplage anharmonique représenté par les constantes de Grüneisen. Les taux d’interactions ainsi calculés ne servent pas uniquement à la résolution de l’ETB des phonons, mais ont permis aussi une analyse complète des canaux de relaxation des phonons longitudinaux optiques de centre de zone. Cette analyse a montré que le canal de Vallée-Bogani est négligeable dans le GaAs, et que vraisemblablement les temps de vie des phonons LO de centre de zone dans l’InAs et le GaSb rapportés dans la littérature sont fortement sous-estimés. Pour la première fois à notre connaissance, un couplage de deux solveurs Monte Carlo indépendants l’un dédié aux porteurs de charges (Thèse E. Tea) et l’autre dédié aux phonons, est effectué. Cela permet d’étudier l’effet des phonons chauds sur le transport des porteurs de charges. Cette étude a montré que l’approximation de temps de relaxation surestime souvent l’effet bottleneck des phonons. Le ‘solveur’ Monte Carlo est étendu pour résoudre l’ETB des phonons dans l’espace réel (en plus de l’espace réciproque), cela a permet d’étudier le transport des phonons et ainsi de la chaleur. La théorie généralisée de Ridley est toujours utilisée avec des particules de simulations qui interagissent les unes avec les autres directement. Les règles de conservation de l’énergie et de la quantité de mouvement sont rigoureusement respectées. L’effet des processus Umklapp sur la quantité de mouvement totale des phonons est fidèlement traduit; tout comme l’effet des interactions sur les directions des phonons, grâce à une procédure prenant en compte les directions vectorielles respectives lors d’une interaction, au lieu, de la distribution aléatoire usuellement utilisée. Les résultats préliminaires montrent la limite de l’équation analytique de conduction de la chaleur. / This work is dedicated to the study of phonon transport and dynamics via the solution of Boltzmann Transport Equation (BTE) for phonons. The Monte Carlo stochastic method is used to solve the phonon BTE. A solution scheme taking into account all the different individual types of Normal and Umklapp processes which respect energy and momentum conservation rules is presented. The use of the common relaxation time approximation is thus avoided. A generalized Ridley theoretical scheme is used instead to calculate three-phonon scattering rates, with the Grüneisen constant as the only adjustable parameter. A method for deriving adequate adjustable anharmonic coupling coefficients is presented. Polarization branches with real nonlinear dispersion relations for transverse or longitudinal optical and acoustic phonons are considered. Zone-center longitudinal optical (LO) phonon lifetimes are extracted from the MC simulations for GaAs, InP, InAs, and GaSb. Decay channels contributions to zone-center LO phonon lifetimes are investigated using the calculated scattering rates. Vallée-Bogani’s channel is found to have a negligible contribution in all studied materials, notably GaAs. A comparison of phonons behavior between the different materials indicates that the previously reported LO phonon lifetimes in InAs and GaSb were quite underestimated in the literature. For the first time, to our knowledge, a coupling of two independent Monte Carlo solvers, one for charge carriers [PhD manuscript, E. TEA], and one for phonons, is undertaken. Hot phonon effect on charge carrier dynamics is studied. It is shown that the relaxation time approximation overestimates the phonon bottleneck effect. The phonon MC solver is extended to solve the phonon’s BTE in real space simultaneously with the reciprocal space, to study phonon and heat transport. Ridley’s generalized theoretical scheme is utilized again with simulation particles interacting directly together. Energy and momentum conservation laws are rigorously implemented. Umklapp processes effect on the total phonon momentum is thoroughly reproduced, as for the anharmonic interactions effect on resulting phonon directions. This is thanks to a procedure taking in consideration the respective vector directions during an interaction, instead of the randomization procedure usually used in literature. Our preliminary results show the limit of the analytic macroscopic heat conduction equation.
|
Page generated in 0.0508 seconds