• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 293
  • 28
  • Tagged with
  • 321
  • 321
  • 321
  • 321
  • 321
  • 24
  • 23
  • 20
  • 17
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Material Characterization for the Simulation of Drop Tests Against PMMA Sheets

Sancho Montagut, Arturo January 2020 (has links)
There is a high demand for implementing simulations in the design and product devel-opment processes, avoiding the execution of costly tests on prototypes and giving thechance of discarding unsuitable designs, as well as exploring possible ones without much cost added.This project assignment is to find a suitable way to simulate drop tests on two typesof PMMA sheets, a material widely used on luminaire covers. Therefore, it becomesnecessary to study the mechanical behavior of these materials, using experimental tests,in order to calibrate the material models used in the simulations.During the experimental testing, common polymer behaviors were found on the twostudied materials, such as rate dependence, non-linear elasticity, viscoelasticity and vis-coplasticy. Behaviors which presented several challenges regarding the choice and cali-bration of the material models.The two di?erent polymers were calibrated for the simulations using two di?erentmaterial models. An elastic-plastic (Drucker Prager Plasticity) model was used for oneof the materials, whereas an hyperelastic-viscoelastic model was used for the other one.Finally, several drop tests simulations were conducted and compared with experimentaltests
262

Quenching distortion in AISI E52100 steel

Kellner, Hans January 2013 (has links)
Heat treatment of different steel products have existed for thousands of years. It has always been an important tool to get the microstructure and resulting properties such as hardness and case hardness and it is even more important today than ever before. This project concentrated on the quenching process and means to decrease the distortion caused by this process. The effect of different oils, temperatures, agitation and if gas quenching could give better results were investigated. The results showed that Miller´s 75 quench oil was better than Park´s 420 at slow agitation and that the viscosity of the oils influenced how much changes in agitation speed and oil temperature affected the distortion. It also shows that gas quenching is an alternative to oil quenching if the microstructure can be improved. Otherwise using Miller´s 75 with low agitation in the Surface combustion furnace will give best results.
263

Fe-based Amorphous Powder for Soft-Magnetic Composites

Larsson, Oskar January 2013 (has links)
Fe-based amorphous powders are fabricated through gas and water atomization using industrial grade raw materials. The atomic structure of the powder is examined by X-Ray Diffraction (XRD). Eight of totally thirteen different compositions are proved completely amorphous or amorphous with traces of crystalline phase in the desired powder particle size (d > 75 μm) and five are crystalline. It reveals that the Glass Forming Ability (GFA) of atomized powders is well correlated to the GFA of as-casted rods or melt-span ribbons. In the present study at least 1.5-2 mm critical size of GFA for a target composition is necessary for the formation of amorphous powders in the desired particle size. The thermal stability of the amorphous powder is examined by Differential Scanning Calorimetry (DSC). Applying the conventional powder metallurgy process the amorphous powders are mixed with the crystalline Somaloy® 110i, a commercial Soft Magnetic Composite (SMC) material from Höganäs AB in Sweden, and made into toroid-shaped components. The components are annealed aiming for improved soft-magnetic properties. The magnetic measurements are taken on copper-wire double coiled toroids. As a result, the total magnetic flux (B), coercivity (HC) and permeability (μmax) is reduced due to the addition of amorphous powders to Somaloy® 110i powder but the core losses (P) is at the same level despite reduced density. An improved soft magnetic property and core loss is revealed by the comparison to recent literature reports on SMC mixing of crystalline and amorphous powders.
264

Heat Transfer Aspects of Using Phase Change Material in Thermal Energy Storage Applications

Chiu, Justin NingWei January 2011 (has links)
Innovative methods for providing sustainable heating and cooling through thermal energy storage (TES) have gained increasing attention as heating and cooling demands in the built environment continue to climb. As energy prices continue to soar and systems reach their maximal capacity, there is an urgent need for alternatives to alleviate peak energy use. TES systems allow decoupling of energy production from energy utilization, both in location and in time. It is shown in this thesis that successful implementation of TES in the built environment alleviates peak energy load and reduces network expansion as well as the marginal energy production cost. This thesis analyzes phase change material (PCM) based TES systems in terms of material property characterization, numerical modeling and validation of thermal storage, as well as case specific techno-economic feasibility studies of system integration. The difficulties identified in latent heat TES design, such as heat transfer aspects, subcooling and identification of phase separation, have been analyzed through Temperature-History mapping and TES numerical modeling with experimental validation. This work focuses on the interdependency between resource availability, thermal charge/discharge power and storage capacity. In a situation where resource availability is limited, e.g. when using free cooling, waste heat or off-peak storage, the thermal power and storage capacity are strongly interrelated and should always be considered in unison to reach an acceptable techno-economic solution. Furthermore, when considering TES integration into an existing thermal energy distribution network, three adverse aspects are revealed in the Swedish case study: the single tariff system, the low-return temperature penalty, and the low storage utilization rate. These issues can be overcome through better adapted policies and optimized storage control strategies. Finally, despite the currently unfavorable conditions in the Swedish energy system, it is shown that TES has the potential to mitigate climate change through greenhouse gas emission reduction by displacing fossil-fuel based marginal thermal energy production. / QC 20110629 / Cold Thermal Energy Storage
265

FE Simulation of protective insulation of catalysts in exhaust after-treatment systems of trucks and buses : Investigation and characterization of catalytic converter support mat material for accurate modeling in finite element simulations

Bhattasali, Manroop January 2022 (has links)
The increase of new and ever more stringent emission legislation has brought about with it a surge in the demand for more sustainable automotive solutions. This has particularly been the case for automobiles, including heavy-duty vehicles like trucks and buses, with internal combustion engines, which now require the design and manufacturing of more durable and reliable components. An important component of internal combustion engine automobiles, which helps achieve this target, is the exhaust after-treatment system. Exhaust after-treatment systems are usually equipped with some type of catalytic converter, treating the combustion gases from the engine exhaust manifold to reduce the concentration of pollutants. The catalytic converter assembly usually consists of an assembly of an outer metallic canning, an inner substrate and a packaging mat in between the two. The packaging mat, commonly known as the support mat, is an important component in the assembly, protecting the ceramic substrate from road induced and thermal loads, thereby preventing any damage to the latter. This thesis involves further development of a finite element model for the support mat that could be used in catalytic converter simulations with a reasonable degree of accuracy and reliability. In line with this objective, the characteristic mechanical response of the mat is first studied through a series of material tests: namely compression, friction, and shear tests. Different non-linear material models like hyperfoam, hyperelastic and viscoelastic models, are then created in ABAQUS to simulate the mat behaviour in the tests. The material model correlating most closely with the test is then implemented in the simulation of the assembly process, canning of a catalytic converter. This report includes the material tests conducted on the mats in new and aged condition, findings of the characteristic response of the mats in these tests as well as the constitutive material modelling and finite element simulations carried out for correlation with test data from the new mats. The most appropriate material model was also implemented in a canning assembly simulation to evaluate the efficacy of the material model in predicting the mat pressure, gap bulk density, and push-in force.
266

Crack propagation in 3D-printed PLA

Stenborg, Johan, Ramirez Flores, Amaro January 2022 (has links)
Cracks form in all materials. This project was about investigating the crackpropagation in 3D-printed PLA. Both simulations and experiments has beenperformed to get the results. The simulations used a already written code to solvethe problem with FEM. It turned out to be much harder then anticipated to getthe simulations to run as they should. Both simulations and experiments wheresupposed to be executed with 3 point bending, but because of convergence problemsin the simulations, simplifications where made. When comparing the simulationsand experiments, no trustworthy conclusions could be made. There are a lot ofsources of error in this project. But with a bit more time and experience with theused software, it should be able to get some good results which one could use tosimulate other material cracking.
267

Construction of cooling rig and investigation of cooling sensitivity for aluminum crash alloy

Björk, Lars January 2015 (has links)
The work presented in this master thesis deal with the issue of quenching, investigation regarding different cooling rates and its effect on the material properties of aluminum alloy in the 6xxx series used for crash purposes in cars, such as crash boxes, beams and other crash relevant parts. Precipitation of Mg2Si due to different cooling rates affects the material properties such as crash performance, thus the aluminum alloy used is sensitive to different cooling rates. In order to perform tests with different cooling rates a cooling rig was constructed. In order to evaluate the different cooling rates both mechanical testing such as tensile test and 3-point bending test and compression test were performed. Also analyses with scanning electron microscope/energy-dispersive x-ray spectroscopy were performed to estimate grain boundary decoration of Mg2Si due to the different cooling rates. Furthermore LOM analyses were performed to evaluate if the experimental setup had any effect on material properties such as grain size. The constructed cooling rig produced different cooling rates with reliable repeatability as intended. Cooling rates between 130 ̊C/s and 20 ̊C/s were accomplished. Mg2Si occurred in all investigated test samples with various amounts. Higher cooling rates decreases the precipitation of Mg2Si to the grain boundaries, higher cooling rates also increased the bending angle achieved from the 3-point bending test. Furthermore, extensive solution heat treatment at elevated temperatures leads to grain growth.
268

Study of Argon Shrouding in Ingot Casting, with Focus on Improving the Operation at Scana Björneborg Steel Plant

Ghazian Tafrishi, Babak January 2014 (has links)
This thesis has been carried out as a development project at Scana Steel Björneborg with the purpose to study the influential parameters in argon shrouded ingot casting during the manufacturing of low-alloy steels. In the first stage, a literature study was conducted in order to investigate the theoretical background of the procedure and the importance of protecting the melt during ingot casting. Next, a computer model of the shield was designed using COMSOL Multiphysics® with regard to the process conditions at Scana Steel Björneborg. The effect of various parameters on the process was examined through simulations of the argon gas flow pattern, heat transfer between the gas and the melt stream, and the chemical species transport in the gas around the melt stream. Based on the simulation results, two different shapes of shield were proposed for the argon shrouding operation. A set of implementation tests was executed in order to check the installation and usage conditions of the two new shields. After deciding the proper shape of the shield, a full-scale ingot-casting test was performed with the selected shield to investigate the protection behavior. Moreover, the impact of the new casting-protection shield on the nitrogen and oxygen contents of steel was examined through sampling and analyzing the steel before and after casting. It was found that the use of the new shield during the uphill ingot casting is an effective way to reduce the final nitrogen and oxygen contents of the casted ingot. Therefore, the new design of the shield can be used as a developed substitute for the protection of the melt stream in the ingot casting operation.
269

Spinodal Decomposition in the Binary Fe-Cr System

Baghsheikhi, Saeed January 2009 (has links)
Spinodal decomposition is a phase separation mechanism within the miscibility gap. Its importance in case of Fe-Cr system, the basis of the whole stainless steel family, stems from a phenomenon known as the “475oC embrittlement” which results in a ruin of mechanical properties of ferritic, martensitic and duplex stainless steels. This work is aimed at a better understanding of the phase separation process in   the Fe-Cr system. Alloys of 10 to 55 wt.% Cr , each five percent, were homogenized to achieve fully ferritic microstructure and then isothermally aged at 400, 500 and 600oC for different periods of time ranging from 30min to 1500 hours. Hardness of both homogenized and aged samples were measured by the Vickers micro-hardness method and then selected samples were studied by means of Transmission Electron Microscopy (TEM).  It was observed that hardness of homogenized samples increased monotonically with increasing Cr content up to 55 wt.% which can be attributed to solution hardening as well as higher hardness of pure chromium compared to pure iron.  At 400oC no significant change in hardness was detected for aging up to 1500h, therefore we believe that phase separation effects at 400oC are very small up to this time. Sluggish kinetics is imputed to lower diffusion rate at lower temperatures. At 500oC even after 10h a noticeable change in hardness, for alloys containing 25 wt.% Cr and higher, was observed which indicates occurrence of phase separation. The alloy with 10 wt.% Cr did not show change in hardness up to 200h which suggests that this composition falls outside the miscibility gap at 500oC. For compositions of 15 and 20 wt.% Cr only a small increase in hardness was detected even after 200h of aging at 500oC, which could be due to the small amounts of α´ formed. However, it means that alloys of 15 wt.% Cr and higher are suffering phase separation. For compositions inside the miscibility gap, hardening effect is a result of phase separation either by nucleation and growth or spinodal decomposition. To distinguish between these two mechanisms, TEM studies were performed and we found evidence that at 500oC the Fe-25 wt.% Cr sample decomposes by nucleation  and growth  while that of 35 wt.% Cr  shows characteristics of the spinodal mechanism. For compositions inside the miscibility gap, with increasing Cr content up to 40% the change in hardness generally increased and for 45% and higher it always decreased. This suggests that the composition range corresponding to the spinodal region at 500oC is biased towards the Fe-rich side of the phase diagram. At 600oC only samples of 25, 30 and 35 wt.% Cr were studied because according to the previous studies, the spinodal boundary is most probably located in this composition range. However, no change in hardness was observed even up to 24h. We believe that this means the miscibility line lies below 600oC for alloys containing 35 wt.% Cr and lower. Further investigations are needed to confirm and explain this result.
270

Towards a sustainable road infrastructure in an age of digitization: opportunities and challenges

Liu, Zhuhuan January 2022 (has links)
Pavement system plays an indispensable role in the socio-economic and sustainable development of every modern society. Yet, pavement construction and maintenance is also responsible for a significant fraction of the GHG emissions from the whole transport sector. At the same time, the extensive global pavement network entails continual investment in maintenance and rehabilitation activities. Given the evidence from previous studies, pavement maintenance has a great potential in reducing pavement-induced GHG emissions and fuel consumption. To assist the transition towards a future sustainable road infrastructure, this thesis has marked the theoretical basis of sustainable pavement maintenance management. Two approaches are discussed to offer a multi-dimensional view for future sustainability improvement in pavement maintenance practices. With the still-evolving concept of sustainability in road infrastructure, it is necessary to recognize where we are and what we need to do to develop a comprehensive management framework with the opportunities and challenges. Based on a systematic literature review, this project identifies the current stage of sustainable road infrastructure management and guides to sustainability-oriented maintenance optimization for designing top-down strategies. Meanwhile, it is not enough to only optimize the decision-making process; more bottom-up knowledge of pavement materials is required to inform better maintenance design. This thesis has focused on the self-healing property of asphalt material due to the non-negligible sustainability indications it implies. By applying neutron tomography and image processing technique, the microstructural changes during the self-healing process are analyzed with its 7-hour time-series volumetric data. The experiment has shown that different filler content has a great influence on self-healing efficiency in asphalt mastics. The results will give us the possibility to optimize asphalt self-repair, shedding a light on a new generation of sustainable asphalt pavement. The two approaches presented in this thesis offer valuable insights into sustainable road infrastructure optimization from different aspects. / I varje modernt samhälle spelar vägarna en viktig roll för socioekonomisk och hållbar utveckling. Vägnätet, med byggande och underhåll, bidrar också med en betydande del av växthusgasutsläppen från hela transportsektorn. Vägnätet kräver kontinuerliga investeringar på grund av behovet av underhåll . Tidigare studier har visat att det finns en stor potential för minskning av utsläppen av växthusgaser från vägunderhåll. Vägarnas kvalitet spelar också roll för trafikens bränsleförbrukning.  Fokus för denna avhandling är att underlätta för framtida hållbar väginfrastruktur. När det gäller den teoretiska grunden för hållbar förvaltning av vägar och underhåll av vägbeläggningar är det nödvändigt att förstå vad som är dagens aktuella teknik, och också att veta vad vi behöver utveckla för att få ett heltäckande ledningsramverk för vägunderhåll. Här finns både möjligheter och utmaningar. Baserat på en systematisk litteraturgenomgång identifierar detta projekt det aktuella läget när det gäller praktik för förvaltning av väginfrastruktur. Som ett resultat av detta presenteras olika metoder som tillämpas för en målorienterad underhållsoptimering, som måste göras top-down från den som har övergripande ansvar för vägnätet. Samtidigt räcker det inte att bara optimera beslutsprocessen, det krävs mer bottom-up kunskap i fråga om beläggningsmaterial för att förbättra metoderna för underhåll. Denna avhandling har därför också fokuserat på den självläkande egenskapen hos asfaltmaterial. Här fanns en unik möjlighet att tillämpa neutrontomografi och bildbehandlingsteknik för analyser av de mikrostrukturella förändringarna under självläkningsprocessen i asfaltmaterial, med 7-timmars tidsserievolymetriska data. Experimentet har visat att olika innehåll av fyllmedel i asfaltmastixen  har stor inverkan på självläkandets effektivitet. De två tillvägagångssätten som presenteras i denna avhandling ger värdefulla insikter om hållbar väginfrastrukturoptimering ur olika aspekter. / <p>QC 220309</p>

Page generated in 0.1562 seconds