• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 281
  • 42
  • 32
  • 25
  • 20
  • 9
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 571
  • 571
  • 95
  • 65
  • 62
  • 49
  • 46
  • 46
  • 44
  • 44
  • 43
  • 40
  • 39
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Mechanismus inducibilní genové exprese rezistenčního proteinu Vga(A)LC ze Staphylococcus haemolyticus / Mechanism of inducible gene expression of resistance protein Vga(A)LC from Staphylococcus haemolyticus.

Novotná, Michaela January 2021 (has links)
The staphylococcal protein VgaA belongs to ARE ABCF family, which confers resistance to ribosome binding antibiotics by the target protection mechanism. VgaA confers resistance to lincosamides, streptogramins A and pleuromutilins and thus provides the so-called LSAP resistance phenotype. The expression of resistance genes often reduces fitness in the absence of an antibiotic, therefore the expression of resistance genes is often tightly controlled and triggered only in response to the presence of an antibiotic to which the protein confers resistance. The inducible expression has also been observed for the vgaA gene, nevertheless, its mechanism has not been elucidated. In the diploma thesis, it was shown that the vgaALC gene from Staphylococcus haemolyticus is regulated by ribosome-mediated attenuation. The mechanism is based on the detection of translation inhibitors via a ribosome translating a special regulatory open reading frame (uORF), which is part of an attenuator located in the 5' untranslated region of the mRNA. The vgaALC gene is regulated at the transcriptional level in response to LSAP antibiotics. Antibiotic specificity of induction is affected not only by the nature of the peptide encoded by uORF but also by the antibiotic specificity of the resistance protein. Fluorescence microscopy...
542

ANTIBIOTIC STEWARDSHIP IN AMERICAN NURSING HOMES

Carter, Rebecca Rosaly, Carter January 2018 (has links)
No description available.
543

The Binding Mechanism of Carbapenems in the Class A beta-lactamase IMI-1 : A Molecular Dynamics Study of Ligand Stability

Lindahl, Isabell January 2022 (has links)
Antibiotic resistance is a global and accelerating matter. Over time, the bacteria have evolved several defense mechanisms against the antibiotics. One of the defense mechanisms is that the bacteria can produce enzymes with the ability to hydrolyze the characteristic b-lactam ring of the antibiotics. These enzymes are called b-lactamases. There are three different generations of antibiotics clinically available, and b-lactamases have co-evolved with the antibiotics over the generations. The third generation of antibiotics are called the carbapenems and b-lactamases which hydrolyze carbapenems are called carbapenemases. Carbapenemases are promiscuous, which means that they hydrolyze a variety of antibiotics. The b-lactamase IMI-1 is an imipenem-hydrolyzing enzyme and imipenem is a carbapenem, hence IMI-1 is a carbapenemase. In this project, IMI-1 was investigated in complex with the carbapenems imipenem, meropenem and biapenem using computational methods. More specifically, a homology model of IMI-1 was generated and the carbapenems were docked into the model. The system was then used for MD simulations where the important molecular interactions were identified, and the binding free energies were calculated using the LIE method. The results indicate that IMI-1 has flexible loops that enables an open and a closed conformation of IMI- 1. All three carbapenems were docked and simulated in both conformations of IMI-1. The results indicate that open and closed conformations confirms the promiscuity of carbapenemases since the flexibility enables various initial binding mechanisms. in other words, the hydrolysis may occur so quickly that the binding does not have much bearing of the activity of the enzyme. Furthermore, the calculated binding free energies indicate that IMI-1 is optimized for the catalytic process rather than the binding affinity. In conclusion, IMI-1 and similar systems requires further research using computational methods to counteract antibiotic resistance based on knowledge.
544

Utilizing bacteriophage to evolve antibiotic susceptibility in multidrug-resistant Pseudomonas aeruginosa

Choudhury, Anika Nawar 15 September 2021 (has links)
No description available.
545

Eco-evolutionary dynamics of microbial communities in disturbed freshwater ecosystems

Barbosa da Costa, Naíla 08 1900 (has links)
L'intensification de l'activité agricole depuis la deuxième moitié du 20e siècle, notamment l'utilisation de produits agrochimiques dans les bassins versants, a affecté la qualité des ressources d’eau douce. Des traces de produits agrochimiques, tels que les pesticides et les engrais, sont transportées par ruissellement de surface ou lixiviation, provoquant des effets directs ou indirects sur les organismes aquatiques. Se trouvant à la base des réseaux trophiques aquatiques, les micro-organismes sont des habitants indispensables dans les écosystèmes d’eau douce, où ils jouent également un rôle important pour les services écosystémiques en tant que propulseurs des cycles biogéochimiques. En faisant partie de l'écosystème, les communautés bactériennes sont susceptibles aux perturbations anthropiques croissantes qui se déroulent dans leurs milieux. Le but principal de cette thèse est d'étudier l'effet de perturbations agricoles simulées sur les bactéries d'eau douce par une approche expérimentale avec des réservoirs extérieurs (mésocosmes) et en utilisant le séquençage d’ADN à haut débit. Des mésocosmes ont été remplis de 1 000 litres d'eau provenant d'un lac bien préservé et, ensuite, ont été traités avec des pesticides largement utilisés au monde en combinaison avec des engrais. Les trois études présentées dans cette thèse explorent les réponses du bactérioplancton dans cette même expérience sous différents angles : la première (chapitre II) s'est concentrée sur les réponses écologiques des communautés bactériennes à de différentes combinaisons de produits agrochimiques; la deuxième (chapitre III) a examiné si les gènes de résistance aux antibiotiques pourraient changer le succès d'espèces soumises à une grave contamination par un herbicide et, finalement, la troisième (chapitre IV) a suivi les altérations évolutives parmi les espèces ayant des réponses écologiques similaires par rapport au traitement avec l’herbicide. En mettant l'accent sur la réaction des communautés exposées à un mélange de produits agrochimiques, le chapitre II complémente des études écotoxicologiques, qui se concentrent traditionnellement sur les réponses d'une seule espèce à des produits chimiques isolés. Les mésocosmes ont été exposés à de différentes concentrations d'un herbicide à base de glyphosate et d'un insecticide néonicotinoïde, séparés ou en combinaison, en plus d'apports faibles ou élevés en nutriments. Le séquençage des amplicons du gène de l'ARNr 16S et la prédiction des variantes de séquences ont étés faits pour étudier la diversité taxonomique, ainsi que le profilage de l'utilisation microbienne des sources de carbone pour décrire les changements de diversité fonctionnelle à travers le temps. Les résultats ont révélé que la stabilité des communautés microbiennes varie en fonction du type et de l'intensité de la perturbation. Bien que les communautés bactériennes n’aient pas réagi à l’introduction de l’insecticide ou d’engrais, elles sont modifiées de manière intensive sous des concentrations élevées de l'herbicide à base de glyphosate. Des aspects distincts de la diversité des communautés ont réagi différemment aux perturbations : alors que la composition fonctionnelle est restée stable face aux perturbations, la composition taxonomique au niveau taxonomique le plus fin a été sensible au glyphosate et résiliente aux échelles taxonomiques plus larges (c'est-à-dire, du genre au phylum). Ces résultats soulignent la complexité des réponses écologiques et fournissent des évidences de la redondance fonctionnelle concernant l'utilisation des sources de carbone dans les communautés microbiennes. Le chapitre III a testé l'hypothèse selon laquelle les gènes de résistance aux antibiotiques, en particulier les pompes d'efflux, favorisent la survie des bactéries en présence de l'herbicide à base de glyphosate. Cette hypothèse n'a été confirmée que par des études expérimentales en laboratoire avec des cultures bactériennes et plus récemment dans les microbiomes du sol. C'était donc la première fois que cette hypothèse a été testée dans un système aquatique. Au chapitre II, on a observé que l'herbicide à base de glyphosate favorisait la domination de nombreux taxons de l'embranchement des protéobactéries, dont Agrobacterium, un genre qui code pour l'enzyme cible du glyphosate appartenant à la classe des résistants. Cependant, d'autres espèces codant pour la classe de l'enzyme sensible au glyphosate étaient également favorisées, ce qui implique le rôle d'autres mécanismes de résistance. Dans le chapitre III, les analyses de métagénomes et des génomes assemblés par métagénomes ont révélé une augmentation de la fréquence de gènes de résistance aux antibiotiques après l'administration de fortes doses de l'herbicide. D’ailleurs, l'abondance relative des espèces présentes après qu’une forte dose de l'herbicide a été administrée était mieux prédite par la présence de gènes d'efflux d'antibiotiques dans leur génome que par la présence du gène codant pour l'enzyme résistante au glyphosate. Ces résultats renforcent les études récentes et contribuent aux premières évidences provenant des communautés bactériennes d'eau douce. L'objectif du chapitre IV était de vérifier si les bactéries ayant la même réponse écologique à la contamination par l'herbicide à base de glyphosate présenteraient également des réponses évolutives similaires. En plus, ce chapitre avait pour but de contribuer aux preuves expérimentales du modèle de l'écotype stable, un modèle proéminent sur l'évolution et l'origine de la diversité dans les espèces bactériennes. On a supposé que les espèces favorisées par l'herbicide subiraient des balayages sélectifs éliminant la variation génétique dans le génome, comme le prédit le modèle évolutif de l'écotype stable. Pour tester cette hypothèse, des polymorphismes nucléotidiques ont été quantifiés au sein des populations bactériennes au cours du temps dans 12 populations bien représentées dans le séquençage métagénomique qui a été fait dans le chapitre III. Contrairement à ce que l'on attendait, les populations écologiquement prospères ont montré une variété de réponses évolutives et la diversité n'a été supprimée que dans quelques-unes d'entre elles. Les résultats montrent que d'autres mécanismes évolutifs qui maintiennent la variation génétique, tels que des balayages sélectifs à l'échelle du gène plutôt qu’à l'échelle du génome, peuvent être plus souvent impliqués dans le succès des espèces qui survivent au stress anthropique. Mis ensemble, ces résultats soulignent la complexité des réponses bactériennes face à une perturbation anthropique au niveau des communautés, des populations, des gènes et des allèles. Les connaissances apportées par cette thèse peuvent améliorer les évaluations des risques de déversements accidentels en eau douce. Le changement permanent à des niveaux taxonomiques fins et la sélection croisée pour les gènes de résistance aux antibiotiques en présence de concentrations élevées d'herbicides indiquent des risques qui devraient être mieux compris par rapport à leur prédominance et les mécanismes qui les causent. D’ailleurs, la dynamique évolutive décrite ici sur une échelle de temps de courte durée fournit des données pour soutenir une importante théorie sur la différenciation et la spéciation bactériennes. / Agriculture intensification in the second half of the 20th century, particularly the use of agrochemicals within watersheds, has affected freshwater quality. Traces of agrochemicals, such as pesticides and fertilizers, reach freshwater systems through runoff or leaching, causing direct or indirect effects on aquatic organisms. Microorganisms are essential inhabitants of aquatic systems as they are at the foundation of food webs and play roles in ecosystem functioning as important drivers of biogeochemical cycles. By being part of the ecosystem, bacterial communities are subject to the increasing anthropogenic perturbations in their environment. The main objective of this thesis is to investigate the effect of simulated agricultural perturbations on freshwater bacteria through an experimental approach with outdoor tanks (mesocosms) and using high-throughput DNA sequencing. Mesocosms were filled with 1,000 L of water from a pristine freshwater lake and treated with widely used pesticides in combination with fertilizers. The three main studies in this thesis explored the bacterioplankton responses in this experiment through different angles: the first study (chapter II) focused on ecological responses to a combination of agrochemicals; the second (chapter III) explored how changes in antibiotic resistance genes could explain the ecological success of species facing severe herbicide contamination and the third study (chapter IV) tracked evolutionary changes among species with similar ecological responses to the herbicide treatment. Chapter II aimed to complement ecotoxicological studies, that traditionally focus on single species responses to individual chemicals, by focusing on communities exposed to a mixture of agrochemicals, as typically observed in nature. For that, the mesocosms were exposed to different concentrations of a glyphosate-based herbicide and a neonicotinoid insecticide, isolated or in combination, in addition to low or high nutrient inputs. Sequencing of 16S rRNA gene amplicons and inference of amplicon sequence variants were done to study taxonomic diversity, as well as profiling microbial use of carbon sources to describe functional diversity changes through time. The results revealed that the stability of microbial communities varies according to the type and intensity of the disturbance. The highest dose of the glyphosate-based herbicide was the major driver of ecological responses within bacterial communities, which were not altered by the insecticide nor by nutrient fertilization. Distinct aspects of community diversity responded differently to perturbation: while functional composition remained stable in face of disturbances, taxonomic composition was sensitive to glyphosate at the finest taxonomic level and resilient at higher taxonomic units (i.e. genus to phylum). These results highlight the complexity of ecological responses and provide evidence of functional redundancy regarding the use of carbon sources in these communities. Chapter III tested the hypothesis that antibiotic resistance genes, particularly efflux pumps, would favour bacterial survival in the presence of the glyphosate-based herbicide. This hypothesis has only been confirmed through experimental laboratory studies with bacterial cultures and more recently in soil microbiomes, it was thus the first time it was tested in an aquatic system. As observed in chapter II, glyphosate-based herbicide favoured the dominance of many taxa of the phylum Proteobacteria, including Agrobacterium, a genus that encodes the glyphosate-resistant target enzyme. However, other species encoding the glyphosate-sensitive version of the enzyme were also favoured, implying other resistance mechanisms. In chapter III, the analysis of metagenomes and metagenome-assembled genomes revealed an increased frequency of antibiotic resistance genes following high doses of the herbicide. Additionally, the relative abundance of species after a severe herbicide pulse was better predicted by the presence of antibiotic efflux genes in their genome than by the presence of the gene encoding the resistant glyphosate target enzyme. These results reinforce recent studies and contribute to the first evidence from freshwater bacterial communities. The goal of chapter IV was to test if bacteria with the same ecological response to the contamination with the glyphosate-based herbicide would also show similar evolutionary responses. Furthermore, this chapter aimed to contribute to experimental evidence to the stable ecotype model, a prominent model on the evolution and origin of diversity in bacterial species. If assumptions of the stable ecotype model were confirmed by the experiment, species favoured by the herbicide would experience selective sweeps purging genetic variation across the genome. To test this hypothesis, single nucleotide variants were quantified within bacterial populations over time in 12 populations well-represented in the metagenomic sequencing that was performed in chapter III. Differently than expected, ecologically successful populations showed a variety of evolutionary responses and diversity was purged only in a few of them. The results show that other evolutionary mechanisms that maintain genetic variation, such as gene-wide specific sweeps rather than genome-wide sweeps, may be more often involved in the success of species surviving anthropogenic stress. Together, these results highlight the complexity of bacterial responses in the face of an anthropogenic disturbance at the level of communities, populations, genes, and alleles. The knowledge provided by this thesis may improve assessments of the potential risks of accidental spills in freshwater. The permanent change at fine taxonomic levels and the cross-selection for antibiotic resistance genes in the presence of high concentrations of herbicide indicate risks that should be better understood regarding their predominance and causing mechanisms. Moreover, the evolutionary dynamics here described in a short-term time scale provide observational data to support a theoretical background on bacterial differentiation and speciation.
546

Discovery of Novel Antibacterial Agents against Avian Pathogenic Escherichia coli (APEC): Identification of Molecular Targets, Assessing Impact on Gut Microbiome and Evaluating Potential as Antibiotic Adjuvants

Kathayat, Dipak January 2021 (has links)
No description available.
547

Drug Design of β-Lactamase Inhibitors of the DBO-scaffold against OXA-48 : A Molecular Dynamics Study of Ligand Stability in the Michaelis Complex

Liljeholm, Linda January 2022 (has links)
The emergence of β-lactamase-mediated antibiotic resistance is one of the biggest threats in modern times. Combined with the discovery void of new forms of antibiotics, this sets the course toward a future where the efficacy of present-day health care will be jeopardized. To hinder the spread of β-lactamase-mediated antibiotic resistance, the development of the drug class β-lactamase inhibitors has been prioritized. The foremost candidate for development of this drug class, that has wide-spectrum inhibition of β-lactamases, is the clinically available avibactam of the diazabicyclooctane-scaffold (i.e., DBO-scaffold). However, the clinical applications of this inhibitor have been limited against one of the more rapidly spreading β-lactamases; OXA-48. In order to bolster the drug development of β-lactamase inhibitors of the DBO-scaffold, with good inhibitory activity toward OXA-48, DBO-ligands with different structure elements were analyzed for stability of the Michaelis Complex in the OXA-48 binding site using molecular dynamic simulations. The results indicate that elongation of the chain to the anionic group of the ligand combined with the addition of a methyl group to the DBO-ring was stabilizing for the productive position between the backbone hydrogens of Y211 and S70. The binding affinity was also estimated using the Linear Interaction Energy method, and an offset parameter of γ ≈ -19 kcal/mol was found and could represent the entropic differences of a flexible ligand-protein system. The results of this study may also indicate that the ligand stability of the Michaelis Complex is of minor consequence to the inhibition mechanism as a whole compared to the reaction rate.
548

Changes in Antimicrobial Resistance from 1994 to 2011 and Exploring Farm Management Practices Associated with Antimicrobial Resistance in Salmonella on U.S. Beef Feedlots

Denholm, Rachael Ann 07 September 2017 (has links)
No description available.
549

Antimicrobial Use and Resistance in Zoonotic Bacteria Recovered from Nonhuman Primates

Kim, Jeffrey 23 September 2016 (has links)
No description available.
550

Investigating the Effect of Phage Therapy on the Gut Microbiome of Gnotobiotic ASF Mice

Ganeshan, Sharita January 2019 (has links)
Mounting concerns about drug-resistant pathogenic bacteria have rekindled the interest in bacteriophages (bacterial viruses). As bacteria’s natural predators, bacteriophages offer a critical advantage over antibiotics, namely that they can be highly specific. This means that phage therapeutics can be designed to destroy only the infectious agent(s), without causing any harm to our microbiota. However, the potential secondary effects on the balance of microbiota through bacteriophage-induced genome evolution remains as one of the critical apprehensions regarding phage therapy. There exists a significant gap in knowledge regarding the direct and indirect effect of phage therapeutics on the microbiota. The aim of this thesis was to: (1) establish an in vivo model for investigation of the evolutionary dynamics and co-evolution of therapeutic phage and its corresponding host bacterium in the gut; (2) determine if phage therapy can affect the composition of the gut microbiota, (3) observe the differences of phage-resistant bacteria mutants evolved in vivo in comparison to those evolved in vitro. We used germ-free mice colonized with a consortium of eight known bacteria, known as the altered Schaedler flora (ASF). The colonizing strain of choice (mock infection) was a non-pathogenic strain E. coli K-12 (JM83) known to co-colonize the ASF model, which was challenged in vivo with T7 phage (strictly lytic). We compared the composition of the gut microbiota with that of mice not subject to phage therapy. Furthermore, the resistant mutants evolved in vivo and in vitro were characterized in terms of growth fitness and motility. / Thesis / Master of Applied Science (MASc) / Bacteriophages are viruses that infect bacteria. After their discovery in 1917, bacteriophages were a primary cure against infectious disease for 25 years, before being completely overshadowed by antibiotics. With the rise of antibiotic resistance, bacteriophages are being explored again for their antibacterial activity. One of the critical apprehensions regarding bacteriophage therapy is the possible perturbations to our microbiota. We set out to explore this concern using a simplified microbiome model, namely germ-free mice inoculated with only 8 bacteria plus a mock infection challenged with bacteriophage. We monitored this model for 9 weeks and isolated a collection of phage-resistant bacterial mutants from the mouse gut that developed post phage challenge, maintaining the community of mock infection inside the gut. A single dose of lytic phage challenge effectively decreased the mock infection without causing any extreme long-term perturbations to the gut microbiota.

Page generated in 0.0832 seconds