• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 40
  • 37
  • 28
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 358
  • 85
  • 79
  • 68
  • 59
  • 53
  • 36
  • 35
  • 28
  • 28
  • 26
  • 26
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

New DNA-Targeting Small Molecules as Potential Anticancer Agents and for in vivo Specificity toward Enhanced Silk Production

Ali, Asfa January 2014 (has links) (PDF)
The thesis entitled “New DNA-Targeting Small Molecules as Potential Anticancer Agents and for in vivo Specificity toward Enhanced Silk Production” encompasses design, computational calculations, and syntheses of diverse small molecular scaffolds to explicitly target duplex and higher order DNA morphologies (G-quadruplex DNA). Some of these molecules have a potential as anticancer agents. Besides, an attempt has been made elucidate the importance of novel oligopyrrole carboxamides in the enhancement of silk yield, hence proving to a boon in the field of sericulture. The work has been divided into six chapters. Chapter 1. DNA Binding Small Molecules as Anticancer Agents Figure 1. DNA targeting by small molecules. Cancer has always been a dreadful disease and continues to attract extensive research investigations. Various targets have been identified to restrain cancer. Among these DNA happens to be the most explored one. A wide variety of small molecules, often referred to as “ligands”, has been synthesized to target numerous structural features of DNA (Figure 1). The sole purpose of such molecular design has been to interfere with the transcriptional machinery in order to drive the cancer cell toward apoptosis. The mode of action of the DNA targeting ligands focuses either on the sequence-specificity by groove binding and strand cleavage, or by identifying the morphologically distinct higher order structures like that of the G-quadruplex DNA. Chapter 2. Ligand 5, 10, 15, 20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) Prefers the Parallel Propeller-type Human G-Quadruplex DNA over its other Polymorphs The binding of ligand 5, 10, 15, 20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) with telomeric and genomic G-quadruplex DNA has been extensively studied. However, a comparative study of interactions of TMPyP4 with different conformations of human telomeric G-quadruplex DNA, namely parallel propeller-type (PP), antiparallel basket-type (AB), and mixed hybrid-type (MH) G-quadruplex DNA has not been done. We considered all the possible binding sites in each of the G-quadruplex DNA structures and docked TMPyP4 to each one of them. The resultant most potent sites for binding were analyzed from the mean binding free energy of the complexes. Molecular dynamics simulations were then carried out and analysis of the binding free energy of the TMPyP4-G-quadruplex complex showed that the binding of TMPyP4 with parallel propeller-type G-quadruplex DNA is preferred over the other two G-quadruplex DNA conformations. The results obtained from the change in solvent excluded surface area (SESA) and solvent accessible surface area (SASA) also support the more pronounced binding of the ligand with the parallel propeller-type G-quadruplex DNA (Figure 2). Figure 2. Ligand TMPyP4 prefers parallel propeller-type G-quadruplex DNA morphology. Chapter 3. A Theoretical Analysis on the Selective Stabilization of Intermolecular G-quadruplex RNA with a bis-Benzimidazole Ligand EtBzEt over TMPyP4 in K+ Environment Ever since the discovery of G-quadruplex RNA, a constant urge exists to target these higher order RNA conformations. These structures play a significant role in the transcriptional and translational mechanism. Herein we have determined the mode and extent of association of certain G-quadruplex DNA binding bisbenzimidazole ligand (EtBzEt) in comparison to a known porphyrin ligand (TMPyP4). We have performed docking studies of the known G-quadruplex DNA binding ligands with the parallel propeller G-quadruplex RNA (PPR) to determine the most potent binding conformation which showed EtBzEt to be a better RNA binder than others. Furthermore, a molecular dynamics (MD) simulation (6 ns) was performed for the most stable docked complex in explicit solvent environment. The role of K+ ions, Hoogsteen hydrogen bond formation and backbone dihedral angle between the tetrads were carefully analyzed during the entire simulation run to determine the stability of each ligand associated PPR complex. All the analyses conclusively showed that while TMPyP4 merely stabilized the PPR, the ligand EtBzEt stabilized PPR very efficiently (Figure 3). Figure 3. Stabilzation and destabilization by EtBzEt and TMPyP4, repectively. Red and green ovals represent EtBzEt and TMPyP4, repectively. Chapter 4A. Design and Synthesis of New DNA Binding Fe(III) and Co(II) Salen Complexes with Pendant Oligopyrrole Carboxamides Extensive research on these oligopyrrole carboxamides has shown their specificity toward AT-rich sequences with high binding affinity. Here we have designed and synthesized Fe (III)-and Co (II)-based salen complexes attached with minor groove targeting oligopyrrole carboxamide side-chains (Figure 4). While the ligands showed excellent activity toward DNA damage, they also exhibited high affinity toward the minor grooves of the ds-DNA. This was also reflected in the high efficiency of the ligands toward cancer cell cytotoxicity. Further studies revealed that the ligands resulted in prominent nuclear condensation and fragmentation thereby driving the cells toward apoptosis. The presence of metal coordinated salen moiety conjugated with positively charged pendants ending with minor groove binding oligopyrrole carboxamides might have resulted in the increased activity of the ligands toward DNA targeting and cancer cell death. Figure 4. Chemical structures of the ligands used in this study. Chapter 4B. Design and synthesis of novel oligopyrrole based salen metal complexes and their efficiency toward stabilization of G-quadruplex DNA DNA targeting has been the key strategy toward the restriction of cancer cell proliferation. In a similar effort, we have designed and synthesized novel salen based Ni(II) and Pd(II) metal complexes with positively charged flanking side-chains comprising attached N-methylpyrrole carboxamides of varying lengths (Figure 5). The ligands showed efficient stabilization of the G-quadruplex DNA morphologies, with specificity over the duplex DNA. Sufficient inhibition of the telomerase activity was observed by the TRAP-LIG assay which was ascertained by the prominent restriction of cancer cell proliferation in the long-term cell viability assay. The ligands exhibited condensation and fragmentation of the nucleus when observed under confocal microscopy which is indicative of the cells undergoing apoptosis. Further annexin V-FITC and PI dual staining showed apoptosis to be the mechanistic pathway underlying the cancer cell cytotoxicity by the ligands. Modeling studies clearly showed the stacking of the salen moiety over the G-tetrads with the association of the pendant oligopyrrole carboxamide units to the grooves. Figure 5. Chemical structures of the ligands used in this study. Chapter 5A. Role of Metal Ions in Novel Fluorescein based Salen and Salphen Complexes toward Efficient DNA Damage and their Effect on Cancer Cells Metal ions play an important role toward DNA damage and numerous ligands have been synthesized for their use in anticancer therapy. Herein, we have designed and synthesized Fe(III) and Co(II) based salen/salphens by bridging two fluorescein moieties with varying spacers (Figure 6). Although the ligands exhibit dual binding mode, the more flexible salen ligands prefer to associate to the minor groove of the DNA while the relatively rigid salphen ligands show greater intercalation. The biophysical experiments reveal better binding affinity of the salphens toward duplex DNA as compared to the salen ligands. The metal coordination resulted in efficient DNA cleavage of plasmid at low ligand concentrations. The ligands also showed cancer cell cytotoxicity, cellular internalization with apoptosis as the proposed mechanism for cell death. Figure 6. Chemical structures of the salen and salphen ligands used in this study. Chapter 5B. Fluorescein based Salen and salphen Complexes as stabilizers of the Human G-quadruplex DNA and Promising Telomerase Inhibitors Metal based salen complexes have been considered as an important scaffold toward targeting of DNA structures. In the present work we have designed and synthesized nickel(II)-and palladium(II)-salen and salphen ligands by using fluorescein as the backbone to provide an extended aromatic surface (Figure 7). The ligands exhibit sufficient affinity toward the human telomeric G-quadruplex (G4) DNA in preference to the duplex DNA and also exhibit promising inhibition of telomerase activity. This is ascertained by their potency in the long-term cell viability assay which shows significant cancer cell cytotoxicity in presence of the ligands. Confocal microscopy showed cellular internalization followed by nuclear localization. Considerable population at the sub-G1 phase of the cell cycle showed cell death via apoptotic pathway. Figure 7. Chemical structures of the ligands used in this study. Chapter 6. Knockdown of Broad-Complex Gene Expression of Bombyx mori by Oligopyrrole carboxamides Enhances Silk Production Bombyx mori (B. mori) is important due to its major role in the silk production. Though DNA binding ligands often influence gene expression, no attempt has been made to exploit their use in sericulture. The telomeric heterochromatin of B. mori is enriched with 5′-TTAGG-3′ sequences. These sequences were also found to be present in several genes in the euchromatic regions. We examined three synthetic oligopyrrole carboxamides that target 5′-TTAGG-3′ sequences in controlling the gene expression in B. mori (Figure 8). The ligands did not show any defect or feeding difference in the larval stage, crucial for silk production. The compounds caused silencing of various isoforms of the broad-complex transcription factor and cuticle proteins which resulted in late pupal developmental defects. This study shows for the first time use of oligopyrrole carboxamide drugs in controlling gene expression in B. mori and their long term use in enhancing silk production. Figure 8. Chemical structures of the ligands used in this study (top) and increased cocoon size on ligand treatment.
102

Développement de vecteurs de pénétration intracellulaire pour un adressage d’inhibiteurs de la cathepsine D / Development of cell penetration vectors for addressing inhibitors of cathepsin D

Sanchez, Clément 26 May 2016 (has links)
La Cathepsine D (CathD) est une protéase lysosomale surexprimée et sécrétée par de nombreuses tumeurs solides. Cette enzyme favorise la prolifération tumorale et le processus métastatique, faisant d’elle une cible intéressante pour la thérapie anticancéreuse. Il existe un très bon inhibiteur de la CathD, la pepstatine, mais celui-ci traverse trop difficilement la membrane cellulaire pour être actif. C’est pourquoi des vecteurs de pénétration cellulaire, basés sur l’oligomérisation de mimes contraints de dipeptide, ont été développés au laboratoire. De ce travail, un bioconjugué, le JMV4463, a été développé. Composé d’un vecteur AMPA4 (tétramère de l’acide 2-(aminométhyl)phénylacétique), de la pepstatine, et d’une partie hydrophile aidant à la solubilisation du conjugué, ce bioconjugué est capable d’entrer dans les cellules et possède une activité antiproliférative sur différentes lignées de cellules cancéreuses. Partant de ce travail, la synthèse de nouveaux vecteurs potentiels de pénétration cellulaire, oligomères de mimes contraints de dipeptide, a été réalisée. Leur capacité d’internalisation a été établie sous la forme de conjugués avec la pepstatine. Les monomères envisagés étaient des analogues des motifs AMPA et acide (S)-2-(3-amino-4-oxo-3,4-dihydrobenzo[b][1,4]thiazépin-5(2H)-yl)acétique (DBT), motif ayant également montré une importante capacité d’internalisation. Ainsi, des analogues de l’AMPA en série indole, pyrrole et cyclohexane ont été préparés. De plus, la synthèse d’analogues de l’AMPA possédant différentes substitutions a été réalisée, tels que les méta- et para-AMPA, un homologue inférieur ou les 4,5-diméthoxy-, 4,5-dihydroxy- et 4-bromo-AMPA. Un analogue en série benzodiazépine du DBT a également été étudié. Tous les vecteurs correspondants sont capables d’internaliser la pepstatine dans les cellules mais, de façon surprenante, aucun des conjugués n’a montré d’activité anti-proliférative, indiquant un rôle essentiel du vecteur AMPA4. Une étude des relations structure / activité du JMV4463 a confirmé que le vecteur AMPA4 possédait un mode d’action unique mais celui-ci n’a pu être identifié à ce jour. Dans cette étude, il a également été montré qu’il était possible de simplifier la structure de la pepstatine, en remplaçant un de ses motifs statine par un motif gamma-alanine, permettant un coût de production réduit. Enfin, une étude in vivo sur un modèle xénogreffé de souris a montré un fort potentiel anti-tumoral du conjugué JMV4463. / Cathepsin D (CathD) is an overexpressed lysosomal protease secreted by several solid tumors. This enzyme is involved in tumor proliferation and metastasis, which makes it a promising target for cancer therapy. There exists a potent CathD inhibitor called Pepstatin, but it presents a too poor ability to cross the plasmic membrane in order to be active. To overcome this drawback, the development of cell penetrating vectors based on the oligomerization of constrained dipeptide mimetics has been undertaken in our lab. From this work, the bioconjugate JMV4463 has been developed. This bioconjugate is made of an AMPA4 (2-(aminomethyl)phenylacetic acid) vector, the pepstatin and a hydrophilic part which increases its solubility. This bioconjugate is able to penetrate the cells and has an antiproliferative effect on different cancer cell lines. Based on this work, synthesis of new potential cell penetrating vectors, oligomers of constrained dipeptide mimetics, was performed. Their internalization ability was established as their conjugate with pepstatin. We developed analogues of AMPA scaffold and (S)-2-(3-amino-4-oxo-3,4-dihydrobenzo[b][1,4]thiazépin-5(2H)-yl)acetic acid (DBT), which showed an important internalization ability. Thus, AMPA derivatives in indole, pyrrole and cyclohexane series were prepared. Furthermore, the synthesis of AMPA analogues having different substitutions on its aromatic part was performed, such as meta- and para- AMPA, an inferior homologue or 4,5-dimethoxy-, 4,5-dihydroxy- and 4-bromo-AMPA. An analogue of DBT in the benzodiazepin series has also been studied. All the corresponding vectors were able to internalize the pepstatin into the cells. Surprisingly, none of the conjugates showed an anti-proliferative activity, indicating the essential role of the AMPA vector. A structure/activity relationships study was performed for JMV4463. The obtained results confirmed that the AMPA vector has a unique mode of action that has not been identified yet. Furthermore, it has been demonstrated that it was possible to simplify the pepstatin structure by replacing one of its statin residues by a gamma alanine, which allows decreasing the production cost. Finally, an in vivo study on a xenografted mouse model showed a high anti-tumour potential for the JMV4463 conjugate.
103

An investigation of the possible anticancer activity of seven novel bi(amido) gold(I) complexes derived from a purine or azole base

Potgieter, Wilna 11 September 2009 (has links)
Gold(I)phosphines, nucleoside analogues, and azole derivatives have been identified as promising anticancer compounds. The clinical use of these individual compounds is, however, limited due to non-selectivity associated with adverse effects and developed resistance. This study investigated seven novel gold compounds that contain either a nucleoside analogue or an azole, bound via a gold nitrogen bond, which have been designed and synthesized by Dr. Horvath under the supervision of Prof. Raubenheimer from the University of Stellenbosch. The novel compounds are divided into purinecontaining/ nucleoside analogue compounds (UH 86.2, UH 75.1, UH 58.1, UH 145.1) and azole-containing compounds (UH 107.1, UH 126.1, UH 127.1). The anticancer effects of these novel compounds were compared with that of previously described anticancer compounds [Au(dppe)2]Cl and cisplatin. The octanol/water partition coefficients (PC) of the compounds were measured in order to determine whether a correlation between the lipophilicity of the structures and the cytotoxic potency and selectivity exists. This might provide further insight for structural alterations of the compounds in order to improve their anticancer activity. The results from octanol/water PC determinations, revealed that the purine-containing compounds (UH 86.2, UH 75.1, UH 58.1, and UH 145.1), as well as the azole-containing compound, UH 127.1, exhibited hydrophilic properties, while the azole-containing compounds, UH 107.1 and UH 126.1 are lipophilic. In contrast to results by Berners-Price et al. (1999), that reported a direct proportionality between lipophilicity and cytotoxicity, for the current study, involving HeLa cells, CoLo cells, normal resting and PHA stimulated lymphocytes, no correlation was observed. For the Jurkat cell line, however, an increase in lipophilicity for the series of compounds studied was accompanied by an increase in cytotoxicity. The reason for the exception is not yet fully understood. The in vitro tumour specificity of each compound was established with cytotoxicity assays on various cancer cell lines and normal cell cultures. The cancer cell lines included human cervical cancer (HeLa) cells, human colon cancer (CoLo) cells, and human lymphocytic leukaemia (Jurkat) cells. The normal cell cultures included human resting lymphocytes and human phytohemaglutin (PHA) stimulated lymphocytes. From this data, the four most promising novel compounds were identified. Additional tests were performed by adding these four compounds to cancer cells including human breast cancer (MCF-7) cells, and cisplatin sensitive and resistant human ovarian cancer (A2780 and A2780cis) cells as well as normal chicken embryo fibroblasts. The tumour specificity of each compound was determined from the results obtained via the cytotoxicity assays. The compound is more selective the higher the tumour specificity. Cisplatin exhibited the highest tumour specificity, and [Au(dppe)2]Cl, the lowest. The two most promising novelcompounds were identified as UH 126.1 and UH 127.1, which was evidenced by their high tumour specificities. Further experiments were conducted with these two azolecontaining compounds by using Jurkat cells. The possible mechanism by which the novel compounds induce cytotoxicity was investigated with flow cytometric analysis. The effects of the compounds on the cell death pathway, the mitochondrial membrane potential and the cell cycle were determined. These results indicated that the novel compounds, UH 126.1 and UH 127.1 initiate the apoptotic cell death pathway rather than the necrotic cell death pathway. According to results, UH 126.1 and UH 127.1 influenced the status of the mitochondrial membrane potential (MMP) non-selectively and only at high concentrations. Although involvement of mitochondria in the mechanism of action cannot be excluded, results indicated that it is most likely not the primary target. After investigating the effects of the two novel azole-containing compounds on the cell cycle in Jurkat cells, it was detected that these compounds induce cell accumulation in the G1 phase of the cell cycle. It was concluded that UH 126.1 and UH 127.1 might interfere with the cell cycle indirectly, possibly by inhibition of cyclin-dependent kinases and/or other enzymes necessary for DNA replication. In an acute in vivo toxicity test during this study, results revealed drug induced adverse effects (such as significant weight loss, piloerection and diarrhoea), in the mice that received 3 and 6ìmol/kg of both UH 126.1 and UH 127.1. Evidence also revealed signs of nephrotoxicity and epatotoxicity. Due to minimal adverse effects observed in the groups that received UH 126.1 and UH 127.1 at the concentration of 1,5ìmol/kg, this is the suggested maximum tolerated dose (MTD) for these compounds. Further dose-range studies with UH 126.1 and UH 127.1 are, however, needed in order to evaluate clinicalefficacy. Copyright / Dissertation (MSc)--University of Pretoria, 2009. / Pharmacology / unrestricted
104

Phytochemical Screening, Total Phenolic Content, Antioxidant and Cytotoxic Activity of Chromolaena laevigata on Human Tumor Cell Lines

Herrera-Calderon, Oscar, Arroyo-Acevedo, Jorge, Rojas-Armas, Juan, Chumpitaz-Cerrate, Victor, Figueroa-Salvador, Linder, Enciso-Roca, Edwin, Tinco-Jayo, Johnny 16 December 2017 (has links)
Aims: Cancer is the first cause of death in the Peruvian population; searching alternative treatments of medicinal plants constitute a promissory field to find new anticancer drugs. The main objective in this study was to evaluate the phytochemical screening, total phenolic content, antioxidant and cytotoxic activity of ethanol extract of Chromolaena laevigata (C. laevigata) on human tumor cell lines. Study Design: The fresh leaves of C. laevigata were soaked with ethanol followed by phytochemical screening using standard methods. Place and Duration of Study: Laboratory of Applied Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga de Ica, Ica, Peru; Laboratory “Abraham Vaisberg Wolach”, Universidad Peruana Cayetano Heredia, Lima, Peru. Methodology: Phytochemical screening was assessed by using chemical reactives. Total phenolic content (TPC) was developed using Folin Ciocalteu reactive and the antioxidant activity was determined against DPPH and ABTS radicals by spectrophotometry. The cytotoxic activity was determined on human tumor cell lines followed as: MCF-7, H-460, HT-29, M-14, K-562 and DU-145. Results: Phytochemical study confirmed flavonoids and phenolic compounds in ethanol extract. TPC resulted 45.21 ± 3.5 mg of gallic acid equivalent/g of dried extract. The highest antioxidant extract for DPPH and ABTS radical scavenging tests were IC50 = 11.66 ± 1.0 μg/mL, IC50= 12.45 ± 0.50 μg/mL respectively. Ethanolic extracts (μg/mL) showed a low cytotoxicity on human tumor cell lines (CI50 > 20 μg/mL) for DU-145, HT-29, MCF-7 and M-14. Whereas, for H-460, and K562 tumor cell lines showed high cytotoxicity. Conclusion: In our findings, C. laevigata demonstrated a high antioxidant and total phenolic content. The ethanol extract exhibited better cytotoxic effect compared with 5-FU. Hence, This medicinal plant could be effective to prevent chronical diseases as cancer and oxidative stress disorders.
105

Enhancing Cardiomyocyte Survival in Drug Induced Cardiac Injury

Maharsy, Wael January 2012 (has links)
Cardiotoxicity associated with many cancer drugs is a critical issue facing physicians these days and a huge hurdle that must be overcome for a side effects-free cancer therapy. Survival of cardiac myocytes is compromised upon the exposure to certain chemotherapeutic drugs. Unfortunately, the mechanisms implicated in cardiac toxicity and the pathways governing myocyte survival are poorly understood. The following thesis addresses the mechanisms underlying the cardiotoxicity of two anticancer drugs, doxorubicin (DOX) and Imatinib mesylate (Gleevec). Transcription factor GATA-4, has recently emerged as an indispensable factor in the adult heart adaptive response and cardiomyocyte survival. Therefore, the specific aim of this project was to determine the role of GATA-4, its upstream regulators, as well as partners in survival. A combination of cell and molecular techniques done on in vivo, and ex vivo models were utilized to tackle these issues. In this study, we confirmed the cardiotoxicity of the anticancer drug, Imatinib mesylate and found to be age dependent. GATA-4, already known to be implicated in DOX-induced toxicity, was confirmed as an Imatinib target. At the molecular level, we identified IGF-1 and AKT as upstream regulators of GATA-4. Moreover, we confirmed ZFP260 (PEX-1), a key regulator of the cardiac hypertrophic response, as a GATA-4 collaborator in common prosurvival pathways. Collectively, these results provide new insights on the mechanisms underlying drug-induced cardiotoxicity and raise the exciting possibility that cancer drugs are negatively affecting the same prosurvival pathway(s), in which GATA-4 is a critical component. Therapeutic interventions aimed at enhancing GATA-4 activity may be interesting to consider in the context of treatments with anticancer drugs.
106

NMR studies of the structure and interactions of novel bis-naphthalimidopropyl anticancer drugs

Ghafoor, Misbah January 2012 (has links)
The bis-naphthalimidopropyl drugs DMP8408, BNIPDaoct and BNIPDanon, have been developed as novel synthetic lead compounds in cancer therapy. Biochemical assays of these compounds have demonstrated high inhibitor activity (IC50=0.8–1.8μM) against cancer cells, which makes them therapeutically significant. However, knowledge on the structure of these compounds, their target DNA and the drug-DNA complexes is seriously lacking. This justifies the detailed structural and DNA binding studies of these drugs. Determination of the NMR structures of these drugs and their complexes should assist the screening process and enable the discovery of more target specific drugs in the near future. Towards the above goal, the detailed NMR study of DMP8408, BNIPDaoct and BNIPDanon drugs and their interaction with DNA was carried out. The high resolution NMR data and their in depth analysis helped to generate the first NMR structures of DMP8408, BNIPDaoct and BNIPDanon in solution state with a high degree of precision and low RMSD. The results show that the length of the linker chain plays a vital role in the structural and binding properties of these drug compounds, establishing π- π interactions between the two aromatic ends of the drugs. This in return facilitates specific binding to the DNA via intercalation. The classical, self-complementary DNA dodecamer sequence was chosen for drug binding studies. A high resolution NMR structure of the DNA was generated with a low RMSD (Å) and detailed conformational analysis. NMR titrations of DMP8408, BNIPDaoct and BNIPDanon drugs with the 12mer DNA were carried out at 2 ̊C and 25 ̊C, and the effects induced have been monitored by measuring changes to the chemical shifts (1H and 31P) and patterns of intra and intermolecular NOEs. The results show that DNA binding was much stronger in the case of BNIPDaoct and BNIPDanon than DMP8408. Due to a shorter and rigid linker chain, DMP8408 binds to the DNA via the mono intercalation principle, whereas BNIPDaoct and BNIPDanon have a longer and flexible linker chain which facilitates their binding to the DNA via the neighbour exclusion bis-intercalation principle. In addition to the above, similar NMR titration spectra of selectively fluorinated DNA analogues were also measured to probe and provide additional support to the above drug binding results. Based on the above NMR investigation we conclude that BNIPDaoct shows high affinity towards the DNA followed by BNIPDanon and DMP8408 with preference for the major groove of the DNA. The DNA is significantly deformed upon binding to the drugs and this is manifested in the increased line width of the 1H and 31P resonances. It was also shown that the fluorinated DNA is able to distinguish between both the BNIPDaoct and BNIPDanon in its labelled and the unlabelled forms. Similarly, the drugs were able to bind to the DNA and show the same affinity and other effects despite the incorporation of the fluorine label on the DNA. The above mentioned NMR results support the synthetic and biophysical data in the literature and therefore provide new avenues for further research into anticancer drug discovery.
107

Síntese do fragmento C1-C9 da (-)-dictiostatina e estudos visando a síntese total da (+)-tautomicetina / Synthesis of the C1-C9 fragment of (-)dictyostatin and studies toward the total synthesis of (+)-tautomycetin

Sant'ana, Danilo Pereira de, 1980- 26 August 2018 (has links)
Orientadores: Luiz Carlos Dias, Jean-Marc Campagne / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T12:59:10Z (GMT). No. of bitstreams: 1 Sant'ana_DaniloPereirade_D.pdf: 12186591 bytes, checksum: 82263f5c920d42c10acf04cf823af93f (MD5) Previous issue date: 2014 / Resumo: SÍNTESE DO FRAGMENTO C1-C9 DA (-)-DICTIOSTATINA: A (-)-dictiostatina é uma macrolactona de origem marinha que apresenta uma potente atividade antitumoral, inibindo a proliferação de células cancerígenas em concentrações na ordem de nanomolar. Propusemos desenvolver uma nova rota sintética para o fragmento C1-C9 deste produto natural. Conseguimos sintetizar o fragmento C1-C9 da (-)-dictiostatina em 15 etapas a partir do 1,3-propanodiol com 3,57% de rendimento global. Nossa rota sintética utilizou como etapas chaves a epoxidação assimétrica de Sharpless e a abertura de epóxido nas condições de Myashita para formar os centros estereogênicos. Este fragmento compreende os carbonos C1-C9 da (-)-dictiostatina, no qual está contido o dieno 2Z,4E e dois centros estereogênicos (C6R, C7S do produto natural). ESTUDOS VISANDO A SÍNTESE TOTAL DA (+)-TAUTOMICETINA: A (+)-tautomicetina é um policetídeo natural isolado em 1989 a partir de Streptomyces griseochromogenes como um antifúngico. Atualmente, TTN é mais conhecida pela sua atividade em proteínas serina/treonina fosfatases. Propusemos desenvolver uma rota sintética convergente para este produto natural. Conseguimos sintetizar dois fragmentos da tautomicetina, sendo o fragmento B2 correspondendo a parte C1-C12 e o composto 260 que consiste na parte C7¿-C13 da (+)-tautomiceina. A síntese do fragmento B2 teve como etapa chave a abertura estereosseletiva de epóxido quiral, o que consiste uma estratégia inédita para construir a parte desoxipropionato da TTN. A síntese do composto 260 teve como etapa chave, uma metodologia inédita de bis-esterificação de anidridos desenvolvida em nosso grupo de pesquisa / Abstract: SYNTHESIS OF THE C1-C9 FRAGMENT OF (-)-DICTYOSTATIN: (-)-Dictyostatin is a marine macrolactone with potent antitumor activity. Herein, we report the development of a new synthetic route for the C1-C9 fragment of this natural product. The C1-C9 fragment of (-)-dictyostatin was synthesized in 15 steps and 3.57% overall yield from 1,3-propanediol. Our synthetic route employed Sharpless asymmetric epoxidation and epoxide opening under Myashita's conditions as key steps to form the stereogenic centers. The C1-C9 fragment contains the 2Z,4E diene and two stereogenic centers (C6R, C7S) contained in the natural product. STUDIES TOWARD THE TOTAL SYNTHESIS OF (+)-TAUTOMYCETIN: (+)-Tautomycetin is a polyketide natural product isolated in 1989 from Streptomyces griseochromogenes with antifungal activity. Currently, TTN is best known for its activity in serine/threonine phosphatase proteins. We developed a convergent synthetic route to this natural product. Two key fragments of (+)-tautomycetin were synthesized, the B2 fragment containing the C1-C12 chain and the compound 260, corresponding to the C7'-C13 fragment of (+)-tautomycetin. The synthesis of fragment B2 employed a stereoselective chiral epoxide opening reaction as a key step, which consist of a novel strategy to prepare the desoxypropionate moiety of TTN. The synthesis of 260 employed a novel method for bis-esterification of anhydrides developed in the Dias-Campagne groups / Doutorado / Quimica Organica / Doutor em Ciências
108

Nanočástice na bázi ruthenia a testování jejich protinádorové aktivity / Ruthenium-based nanoparticles and testing of their anticancer activity

Žáková, Eliška January 2017 (has links)
Neoplastic diseases hold the second place of the most common causes of death worldwide. Available treatments include various combinations of surgery, chemotherapy, radiation, hormone therapy, immune therapy and targeted therapy. The emphasis is currently laid on nanomedicine, where new nanosized complexes are developed and applied for the targeted treatment and chemotherapy. The aim is to significantly improve the anticancer effect and decrease the damage to organism. In this thesis, ruthenium nanoparticles with a size of 12–14 nm were synthesized and their surface modified with polyvinylpyrrolidone. Furthermore these were subsequently modified with polyoxyethylene(40)stearate for binding of doxorubicin. These nanoparticles were tested on breast carcinoma cells (MDA-MB-231), ovarian carcinoma cells (A2780) and neuroblastoma cells (UKF-NB-4). Apoptosis and necrosis testing showed 60—64 % increase in apoptosis when comparing ruthenium nanoparticles modified with doxorubicin to nonmodified ruthenium nanoparticles. The modification increased level of oxidative stress in tumorous cells and slightly a genotoxicity to non-tumorous cells, nevertheless the hemocompatibility was significantly improved. Testing has proven with IC50 0.98 g/ml, 3.91 g/ml and 1.95 g/ml higher sensitivity to these cells and confirmed expected anticancer activity. Compared to one of the most common chemotherapeutic agents cisplatin the modified ruthenium nanoparticles are significantly more toxic to cell lines A2780 (IC50=21 µg/ml), MDA-MB-231 (IC50=9 µg/ml) and UKF-NB-4 (IC50=4 µg/ml).
109

Novel Acridine-Based Compounds That Exhibit an Anti-Pancreatic Cancer Activity Are Catalytic Inhibitors of Human Topoisomerase II

Oppegard, Lisa M., Ougolkov, Andrei V., Luchini, Doris N., Schoon, Renee A., Goodell, John R., Kaur, Harneet, Billadeau, Daniel D., Ferguson, David M., Hiasa, Hiroshi 14 January 2009 (has links)
We have identified a small library of novel substituted 9-aminoacridine derivatives that inhibit cell proliferation of pancreatic cancer cell lines by inducing apoptosis [Goodell, J.R. et al., 2008. J. Med. Chem. 51, 179-182.]. To further investigate their antiproliferative activities, we have assessed the antiproliferative activity of these acridine-based compounds against several pancreatic cancer cell lines. All four compounds used in this study inhibited the proliferation of pancreatic cancer cell lines in vitro. In addition, we have employed a xenograft tumor model and found that these compounds also inhibit the proliferation of pancreatic cancer in vivo. In light of the potential importance of the anticancer activity of these acridine-based compounds, we have conducted a series of biochemical assays to determine the effect of these compounds on human topoisomerase II. Unlike amsacrine, these compounds do not poison topoisomerase II. Similar to amsacrine, however, these compounds intercalate into DNA in a way that they would alter the apparent topology of the DNA substrate. Thus, inhibition of the relaxation activity of topoisomerase II by these compounds has been reexamined using a DNA strand passage assay. We have found that these compounds, indeed, inhibit the catalytic activity of topoisomerase II. Thus, these novel acridine-based compounds with anti-pancreatic cancer activity are catalytic inhibitors, not poisons, of human topoisomerase II.
110

Structural Optimization of a Simplified Analog of Aplysiatoxin as a Potential Seed for Anticancer Drugs / アプリシアトキシン単純化アナログの抗がん剤シードとしての構造最適化

Kikumori, Masayuki 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19028号 / 農博第2106号 / 新制||農||1030(附属図書館) / 学位論文||H27||N4910(農学部図書室) / 31979 / 京都大学大学院農学研究科食品生物科学専攻 / (主査)教授 入江 一浩, 教授 安達 修二, 教授 保川 清 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM

Page generated in 0.0685 seconds