Spelling suggestions: "subject:"canyons."" "subject:"anyone.""
1 |
Exactly solvable problems for two-dimensional excitonsParfitt, David Geoffrey Whincop January 2003 (has links)
No description available.
|
2 |
Um estudo sobre computação quântica topológica = novas portas para o modelo de fibonacci / A Study on topological quantum computation : new gates to the fibonacci modelCunha, Maicon Henrique 20 August 2018 (has links)
Orientadores: Reginaldo Palazzo Júnior, Clarice Dias de Albuquerque / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-20T02:14:58Z (GMT). No. of bitstreams: 1
Cunha_MaiconHenrique_M.pdf: 692136 bytes, checksum: 3fe313a507d63bb6531e79d113a8cf55 (MD5)
Previous issue date: 2012 / Resumo: Neste trabalho, apresentamos um estudo sobre Computação Quântica Topológica, uma área de pesquisa inserida na computação quântica que busca resolver o problema da decoerência na construção do computador quântico de uma maneira inovadora. Essa computação envolve aspectos de áreas distintas relacionadas a mecânica quântica: teoria de grupos, representação de grupo, anyons e outras. Por isso, uma fundamentação teórica básica nesses tópicos é necessária e será apresentada para embasar o modelo geral de Computação Quântica Topológica. O modelo de Fibonacci é um caso específico que será tratado com ênfase por ser o mais difundido e o único universal conhecido até o momento. Com o modelo de Fibonacci, construímos novas portas quânticas, cuja análise possibilitou conclusões e um refinamento no algoritmo existente para encontrar tais portas / Abstract: In this work, we present a study about Topological Quantum Computation, a research area included in quantum computation that seeks to solve the problem of decoherence in building a quantum computer according to an innovative way. This involves computing aspects of different areas related to quantum mechanics: group theory, group representation, anyons and others. Thus a basic theoretical foundation in these topics is necessary and will be presented to support the general model of Topological Quantum Computation. The Fibonacci model is a particular case, which will be discussed with emphasis, being the most widespread and the only universally known until this moment. With the Fibonacci model, we construct new quantum gates, whose analysis allowed a number of conclusions to be draw, as well as a refinement of the existing algorithm to find such ports / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
3 |
Teorias de gauge e modelos topológicos (anyons e ordem topológica) / Gauge theories and topological models (anyons and topological order)Ferreira, Miguel Jorge Bernabé 12 August 2016 (has links)
Uma das propriedades mais marcantes de partículas que obedecem a dinâmica quântica é o fato de partículas do mesmo tipo (como dois elétrons, por exemplo) serem indistinguíveis. Em três dimensões, essas partículas podem ser separadas em dois grupo distintos - férmions ou bósons - não havendo uma terceira opção. A razão para isso é topológica, ou seja, depende exclusivamente da topologia do espaço. Em duas dimensões, entretanto, existem partículas que obedecem a regras estatísticas fracionárias, ou estatísticas ainda mais bizarras ditas não-abelianas, em que uma simples troca de dois anyons idênticos representa uma transformação unitária na função de onda do sistema ao invés de uma simples fase. Partículas que obedecem essas regras estatística não-usuais recebem o nome de anyons. Da mesma forma como a topologia do espaço em três dimensões dita as possíveis regras estatísticas que as partículas podem obedecer, a estatística aniônica está fortemente relacionando à topologia do espaço e, portanto, sistemas aniônicas são muitas vezes usados para descrever fases topológicas presentes em alguns sistemas bidimensionais. Neste trabalho apresentaremos alguns aspectos gerais de sistemas aniônicos - livres de modelo - e analisaremos alguns modelos de muitos corpos na rede que permitem descrever anyons como excitação de quasi-partícula. A principal classe de modelo que iremos analisar é a classe do modelo duplo quântico (MDQ) - que é um modelo quântico em (2+1)D cujos graus de liberdade são elementos de um grupo G (finito) vivendo nas arestas de uma rede e cuja dinâmica é descrita por uma hamiltoniana de muitos corpos. O MDQ é um modelo já bem estudado e conhecido na literatura; neste trabalho, porém, será apresentada uma formulação alternativa para o mesmo, a qual desempenha dois papeis importantes nesta tese. O primeiro deles é de mostrar que o MDQ pode ser obtido a partir da deformação de um invariante topológico; o que, por sua vez, ajuda a reconhecer a ordem topológica presente no modelo. O segundo papel importante é mostrar que essa formulação leva também a uma hamiltoniana de muitos corpos que representa uma generalização da hamiltoniana do MDQ. Alguns desses novos modelos permitem descrever sistemas aniônicos que não podem ser descritos pelo modelo duplo quântico usual. Em outras palavras, o modelo generalizado que será apresentado neste trabalho permite descrever diferentes fases topológicas partindo da deformação de um mesmo invariante topológico. / One of the most interesting properties of quantum particles is the indistinguishability of particles of the same kind (as for example two electrons). On three dimensions these particles are known to be either fermions or bosons depending on their statistical behaviour. The reason for that is topology, in other words these two possible statistics are due to the space topology. However, on two dimensions there are particles called anyons which are neither fermion nor boson; they may obey a fractional statistic or a even more weird non-abelian statistic - where a single exchange of two identical anyons a unitary transformation on the wave function instead of just acquiring a phase factor. As well as the usual fermionic and bosonic statistic, the anyonic statistic depends strongly on the space topology and thus anyonic systems are often used to describe topological phases of matter of two dimensional systems. In this work we are going to show some general (model free) aspects of anyonic systems and also analyse some many body systems that describe anyons as quasi-particle excitations. We will mostly study a class of model called quantum double models (QDMs). Quantum double models are (2+1)D models where the degrees of freedom are elements of a group G living on the edges of lattice and the dynamic is given by a many body hamiltonian. The QDM is a well known and studied model on the literature, however in this work we are going to show an alternative construction for QDMs which will play two very important roles in this thesis. First, it will allows us to obtain the QDMs from deforming a topological invariant, and that helps to easily identify the topological order on this model. Besides, one can also obtain a many body hamiltonian that represents a generalization of the the QDM hamiltonian. Some of these new models describe anyonic systems other than the ones that can be described by usual QDM. In other words, this new construction leads to a many body hamiltonian that can describe both quantum double models and generalizations of it as particular cases.
|
4 |
Investigation of exotic correlated states of matter in low dimension / Etude d'états exotiques corrélés de la matière en basse dimensionSoni, Medha 16 September 2016 (has links)
La physique statistique quantique formule les règles permettant de classifier les différentes particules. Dans cette thèse nous avons étudié deux projets, l'un portant sur les anyons dits de "Fibonacci" et l'autre sur les fermions sur réseau optique. Ici, nous avons naturellement étendu cette étude aux cas pertinent d'anyons itinérants en interaction sur des échelles. Notre but a été de construire le modèle 2D le simple possible d'anyons itinérants en interaction, analogue direct des systèmes fermioniques et inspiré par les études précédentes. En particulier, nous nous sommes demandé si la séparation spin-charge, bien connu à 1D, pouvait subsister dans le cas d'anyons sur une échelle. De plus, dans l'étude de ce modèle, nous avons découvert une nouvelle phase incompressible pouvant présenter un caractère topologique. Dans le cas des fermions confinés sur un réseau optique unidimensionnel, nous avons étudié les effets d'un chargement non-adiabatique et proposé des protocoles visant à minimiser le réchauffement du gaz quantique. Les atomes ultra-froids sur réseau optique constituent une réalisation idéale pour étudier les systèmes fortement corrélés soumis à un potentiel périodique. Le refroidissement évaporatif d'un nuage d'atomes confiné, c.a.d. sans le potentiel du réseau, s'est avéré être un processus très efficace. Les protocoles courants permettent d'obtenir(pour des fermions) des températures aussi basses que T/TF ≈ 0.08, impossible à réaliser en présence du réseau optique. Notre étude concerne les effets de redistribution de densité pour un système 1D de fermions. Notre but était de voir si des défauts causés par la mauvaise répartition des particules lors du chargement du réseau optique pouvaient empêcher les atomes de se refroidir jusqu'à la température voulue. Nous avons conçu des scenario améliorés où certains paramètres sont modifiés de façon dynamique afin de réduire la densité de défauts créés. / Quantum statistics is an important aspect of quantum mechanics and it lays down the rules for identifying dfferent classes of particles. In this thesis, we study two projects, one that surveys models of Fibonacci anyons and another that delves into fermions in optical lattices. We analyse the physics of mobile non-Abelian anyons beyond one-dimension by constructing the simplest possible model of 2D itinerant interacting anyons in close analogy to fermionic systems and inspired by the previous anyonic studies. In particular, we ask the question if spin-charge separation survives in the ladder model for non-Abelian anyons. Furthermore, in the study of this model, we have found a novel physical effective model that possibly hosts a topological gapped state. For fermions in one dimensional optical lattices, we survey the effects of non-adiabatic lattice loading on four different target states, and propose protocols to minimise heating of quantum gases. The evaporative cooling of a trapped atomic cloud, i.e. without the optical lattice potential, has been proven to be a very effective process. Current protocols are able to achieve temperatures as low as T/TF ≈ 0.08, which are lost in the presence of the optical lattice. We aim to understand if defects caused by poor distribution of particles during lattice loading are important for the fermionic case, forbidding the atoms to cool down to the desired level. We device improved ramp up schemes where we dynamically change one or more parameters of the system in order to reduce density defects.
|
5 |
Teorias de gauge e modelos topológicos (anyons e ordem topológica) / Gauge theories and topological models (anyons and topological order)Miguel Jorge Bernabé Ferreira 12 August 2016 (has links)
Uma das propriedades mais marcantes de partículas que obedecem a dinâmica quântica é o fato de partículas do mesmo tipo (como dois elétrons, por exemplo) serem indistinguíveis. Em três dimensões, essas partículas podem ser separadas em dois grupo distintos - férmions ou bósons - não havendo uma terceira opção. A razão para isso é topológica, ou seja, depende exclusivamente da topologia do espaço. Em duas dimensões, entretanto, existem partículas que obedecem a regras estatísticas fracionárias, ou estatísticas ainda mais bizarras ditas não-abelianas, em que uma simples troca de dois anyons idênticos representa uma transformação unitária na função de onda do sistema ao invés de uma simples fase. Partículas que obedecem essas regras estatística não-usuais recebem o nome de anyons. Da mesma forma como a topologia do espaço em três dimensões dita as possíveis regras estatísticas que as partículas podem obedecer, a estatística aniônica está fortemente relacionando à topologia do espaço e, portanto, sistemas aniônicas são muitas vezes usados para descrever fases topológicas presentes em alguns sistemas bidimensionais. Neste trabalho apresentaremos alguns aspectos gerais de sistemas aniônicos - livres de modelo - e analisaremos alguns modelos de muitos corpos na rede que permitem descrever anyons como excitação de quasi-partícula. A principal classe de modelo que iremos analisar é a classe do modelo duplo quântico (MDQ) - que é um modelo quântico em (2+1)D cujos graus de liberdade são elementos de um grupo G (finito) vivendo nas arestas de uma rede e cuja dinâmica é descrita por uma hamiltoniana de muitos corpos. O MDQ é um modelo já bem estudado e conhecido na literatura; neste trabalho, porém, será apresentada uma formulação alternativa para o mesmo, a qual desempenha dois papeis importantes nesta tese. O primeiro deles é de mostrar que o MDQ pode ser obtido a partir da deformação de um invariante topológico; o que, por sua vez, ajuda a reconhecer a ordem topológica presente no modelo. O segundo papel importante é mostrar que essa formulação leva também a uma hamiltoniana de muitos corpos que representa uma generalização da hamiltoniana do MDQ. Alguns desses novos modelos permitem descrever sistemas aniônicos que não podem ser descritos pelo modelo duplo quântico usual. Em outras palavras, o modelo generalizado que será apresentado neste trabalho permite descrever diferentes fases topológicas partindo da deformação de um mesmo invariante topológico. / One of the most interesting properties of quantum particles is the indistinguishability of particles of the same kind (as for example two electrons). On three dimensions these particles are known to be either fermions or bosons depending on their statistical behaviour. The reason for that is topology, in other words these two possible statistics are due to the space topology. However, on two dimensions there are particles called anyons which are neither fermion nor boson; they may obey a fractional statistic or a even more weird non-abelian statistic - where a single exchange of two identical anyons a unitary transformation on the wave function instead of just acquiring a phase factor. As well as the usual fermionic and bosonic statistic, the anyonic statistic depends strongly on the space topology and thus anyonic systems are often used to describe topological phases of matter of two dimensional systems. In this work we are going to show some general (model free) aspects of anyonic systems and also analyse some many body systems that describe anyons as quasi-particle excitations. We will mostly study a class of model called quantum double models (QDMs). Quantum double models are (2+1)D models where the degrees of freedom are elements of a group G living on the edges of lattice and the dynamic is given by a many body hamiltonian. The QDM is a well known and studied model on the literature, however in this work we are going to show an alternative construction for QDMs which will play two very important roles in this thesis. First, it will allows us to obtain the QDMs from deforming a topological invariant, and that helps to easily identify the topological order on this model. Besides, one can also obtain a many body hamiltonian that represents a generalization of the the QDM hamiltonian. Some of these new models describe anyonic systems other than the ones that can be described by usual QDM. In other words, this new construction leads to a many body hamiltonian that can describe both quantum double models and generalizations of it as particular cases.
|
6 |
Topological Quantum Computing with Fibonacci AnyonsEnblad, Lovisa January 2024 (has links)
This thesis introduces the emerging field of quantum computing, emphasizing its capability to surpass traditional computing by solving complex problems that are beyond the reach of classical computers. Unlike classical systems that operate with bits and logic gates, quantum computing utilizes qubits and quantum gates, exploiting the vast computational space offered by quantum mechanics. A focal point of this study is topological quantum computing, a novel approach designed to overcome the inherent vulnerability of quantum systems to errors, such as decoherence and operational inaccuracies. At the heart of this method lies the use of non-Abelian anyons, with a particular focus on Fibonacci anyons, whose unique topological characteristics and braiding operations present a viable path to fault-tolerant quantum computation. This thesis aims to elucidate how the braiding of Fibonacci anyons can be employed to construct the necessary quantum gates for topological quantum computing. By offering a foundational exploration of quantum computing principles, especially topological quantum computing, and detailing the process for creating quantum gates through braiding of Fibonacci anyons, the work sets the stage for further research and development in this transformative computing paradigm.
|
7 |
Probing Quasihole and Edge Excitations of Atomic and Photonic Fractional Quantum Hall SystemsMacaluso, Elia 27 January 2020 (has links)
The discovery of the fractional quantum Hall effect for two-dimensional electron gases immersed in a strong orthogonal magnetic field represents a cornerstone of modern physics. The states responsible for the appearance of the fractional quantum Hall effect have been found to be part of a whole new class of phases of matter, characterized by an internal order with unprecedented properties and known as topological order. This fact opened up a completely new territory for physical studies, paving the way towards many of the current hot topics in physics, such as topological phases of matter, topological order and topological quantum computing. As it happens for most topologically-ordered phases, fractional quantum Hall states are breeding ground for the observation of many exotic physical phenomena. Important examples include the appearance of degenerate ground states when the system in placed on a space with non-trivial topology, the existence of chiral gapless edge excitations which unidirectionally propagate without suffering of back-scattering processes, and the possibility of hosting elementary excitations, known as quasiparticles and quasiholes, carrying fractional charge and anyonic statistics. Even though for years since their discovery fractional quantum Hall states have been studied only in electronic systems, the recent advances made in the domains of quantum simulators and artificial gauge fields opened the possibility to realize bosonic analogs of these states in platforms based on ultracold atoms and photons. Reaching the appropriate conditions for the simulation of the fractional quantum Hall effect with neutral particles (such as atoms and photons) has required decades of both theoretical and experimental efforts and passed through the implementation of many topological models at the single-particle level. However, we strongly believe that the stage is set finally and that bosonic fractional quantum Hall states will be realized soon in different set-ups. Motivated by this fact, we dedicate this Thesis to the study of the edge and quasihole excitations of bosonic fractional quantum Hall states with the goal of guiding near future experiments towards exciting discoveries such as the observation of anyons. In the first part of the Thesis we focus our attention on the behavior of the edge excitations of the bosonic $ u=1/2$ Laughlin state (a paradigmatic wave function for the fractional quantum Hall effect) in the presence of cylindrically symmetric hard-wall confining potentials. With respect to electronic devices, atomic and photonic platforms offers indeed a more precise control on the external potential confining the systems, as confirmed by the recent realization of flat-bottomed traps for ultracold atoms and by the flexibility in designing optical cavities. At the same time, most of the theoretical works in this direction have considered harmonic confinements, for which the edge states have been found to display the standard chiral Luttinger liquid behavior, leaving the field open for our analysis of new physics beyond the Luttinger paradigm. In the second part we propose a novel method to probe the statistical properties of the quasihole excitations on top of a fractional quantum Hall state. As compared to the previous proposals, it does not rely on any form of interference and it has the undeniable advantage of requiring only the measurements of density-related observables. As we have already mentioned, although the existence of anyons have been theoretically predicted long time ago, it still lacks a clear-cut experimental evidence and this motivated people working with ultracold atoms and photons to push their systems into the fractional quantum Hall regime. However, while there exist plenty of proposals for the detection of anyons in solid-state systems (mostly based on interferometric schemes in which currents are injected into the system and anyons travel along its edges), in the present literature the number of detection schemes applicable in ultracold atomic and/or photonic set-ups is much smaller and they are typically as demanding as those proposed in the electronic context. Finally, in the last part of the Thesis we move to the lattice counterparts of the fractional quantum Hall states, the so-called fractional Chern insulators. Still with the purpose of paving the way for future experimental studies with quantum simulators, we focus our attention of the simplest bosonic version of these states and, in particular, on the properties of its quasihole excitations. Although this topic has already been the subject of intense studies, most of the previous works were limited either to system sizes which are too small to host anyonic excitations, or to unphysical conditions, such as periodic geometries and non-local Hamiltonians. Our study investigates for the first time the properties of genuine quasihole excitations in experimentally relevant situations.
|
8 |
Décodeurs rapides pour codes topologiques quantiquesDuclos-Cianci, Guillaume January 2010 (has links)
L'encodage topologique de l'information quantique a attiré beaucoup d'attention, car c'est un modèle qui semble propice à résister aux erreurs locales. Tout d'abord, le modèle du calcul topologique est basé sur la statistique anyonique non-Abélienne universelle et sur son contrôle. Des anyons indésirables peuvent apparaître soudainement, en raison de fluctuations thermiques ou de processus virtuels. La présence de ces anyons peut corrompre l'information encodée, il est nécessaire de les éliminer: la correction consiste à fusionner les défauts tout en préservant la topologie du système. Ensuite, dans le cas des codes topologiques, on doit aussi protéger l'information encodée dans la topologie. En effet, dans ces systèmes, on n'a accès qu'à une fraction de l'information décrivant l'erreur. Elle est recueillie par des mesures et peut être interprétée en termes de particules. Ces défauts peuplent le code et doivent être annihilés adéquatement dans le but de préserver l'information encodée. Dans ce mémoire, nous proposons un algorithme efficace, appelé décodeur, pouvant être utilisé dans les deux contextes décrits ci-haut. Pour y parvenir, cet algorithme s'inspire de méthodes de renormalisation et de propagation de croyance. Il est exponentiellement plus rapide que les méthodes déjà existantes, étant de complexité [Caractères spéciaux omis] (l[indice supérieur 2] log l) en série et, si on parallélise, [Caractères spéciaux omis] (log l) en temps, contre [Caractères spéciaux omis] (l[indice supérieur]6) pour les autres décodeurs. Le temps étant le facteur limitant dans le problème du décodage, cette caractéristique est primordiale. De plus, il tolère une plus grande amplitude de bruit que les méthodes existantes; il possède un seuil de ~ 16.5% sur le canal dépolarisant surpassant le seuil déjà établi de ~ 15.5%. Finalement, il est plus versatile. En effet, en étant limité au code de Kitaev, on ne savait pas décoder les codes topologiques de manière générale (e.g. codes de couleur). Or, le décodeur proposé dans ce mémoire peut traiter la grande classe des codes topologiques stabiliseurs.
|
9 |
La correction d'erreur pour les anyons non abéliensDauphinais, Guillaume January 2017 (has links)
Bien que le calcul quantique topologique soit tolérant aux fautes de manière intrinsèque à température nulle, cette protection topologique est perdue à toute température plus élevée. L'utilisation de méthodes servant à contrecarrer les effets délétères des excitations thermiques sera donc nécessaire pour construire un ordinateur quantique basé sur ces principes. Dans cette thèse, nous développons des outils de simulation numérique permettant l'analyse de systèmes donnant lieu à des anyons d’Ising. Nous présentons également une méthode de correction d'erreur pouvant être appliquée pour tout modèle anyonique non cyclique, abélien ou non. Cette procédure est fondée sur les travaux de Gács et de Harrington et est basée sur l'utilisation d'automates cellulaires. Une analyse détaillée démontre l'existence d'un taux de création d'excitations critique en deçà duquel l'information peut être protégée. Des simulations numériques permettent d’estimer ce dernier entre $10^{-4}$ et $10^{-3}$.
|
10 |
Topics In Anyons And Quantum Spin SystemsChitra, R 08 1900 (has links) (PDF)
No description available.
|
Page generated in 0.0482 seconds