11 |
The Role of ARID1A in Oncogenic Transcriptional (de)Regulation in Colorectal CancerSen, Madhobi 29 January 2019 (has links)
No description available.
|
12 |
Dialogue entre le recepteur des oestrogènes alpha et le facteur de croissance IGF-I dans l'activation transcriptionnelle des cellules cancéreuses mammairesBaron, Sylvain 24 May 2007 (has links) (PDF)
Le contrôle de la prolifération des cellules cancéreuses mammaires est un phénomène complexe. Les oestrogènes jouent un rôle important dans le contrôle de cette prolifération. L'action des oestrogènes se fait via le récepteur des oestrogènes α (REα), un facteur de transcription qui complexé à l'oestradiol, est capable de moduler la transcription de nombreux gènes impliqués dans la prolifération, l'apoptose ou la différentiation cellulaire. L'utilisation d'anti-hormones qui sont des inhibiteurs compétitifs de l'œstradiol bloquent la prolifération des cellules cancéreuses mammaires. Malheureusement les patientes métastatiques traitées par ce type de molécules développent systématiquement une résistance aux thérapies anti-hormonales. Les facteurs de croissance, tels que l'EGF ou l'IGF-I, qui entraînent une activation du REα de manière ligand indépendante pourraient être responsable de l'apparition de ces phénomènes de résistance. L'étude des voies d'activation du REα par ces facteurs de croissance est donc importante. Le facteur de croissance IGF-I participe au contrôle du développement de la glande mammaire pendant l'embryogenèse et il a une activité œstrogène dans les cellules cancéreuses mammaires. Cette activité oestrogène de l'IGF-I requiert l'expression du récepteur des oestrogènes α (REα), mais on ne connaît pas les mécanismes moléculaires mis en jeu. Nous avons démontré que sur un promoteur complexe tel que le promoteur du gène oestrogéno régulé pS2/TFF1, qui contient un site de liaison au REα et un site de liaison au complexe AP1, l'activation transcriptionnelle de ce gène requiert le REα et le complexe AP1. L'ensemble de ces travaux a permis de mettre en évidence un mécanisme d'action original et non conventionnel du REΑ, en absence d'hormone. En présence du facteur de croissance IGF-I, le REα est nécessaire mais pas suffisant pour activer la transcription et le complexe AP1 joue un rôle aussi important que le REα dans l'activation transcriptionnelle du gène pS2/TFF1. Ce complexe AP1, ou les voies conduisant à son activation pourrait donc être des cibles thérapeutique de choix pour le traitement du cancer du sein.
|
13 |
Transkriptionelle Netzwerke der RAS-abhängigen, MEK-ERK- vermittelten TransformationSolf, Andrea 16 March 2011 (has links)
Transkriptionelle Netzwerke (Transkriptionsfaktoren, epigenetische Modulatoren und spezifische Zielgene) stellen die unterste Ebene der zellinternen Signalübertragung dar. Eingebettet in verschiedene stimulusabhängige Signalwege bedienen sich ihre Komponenten genetischer und epigenetischer Mechanismen, um Zielgene transkrip-tionell zu regulieren und Veränderungen der Chromatinstruktur hervorzurufen. In der vorliegenden Arbeit wurde die hierarchische Organisation und Zusam-mensetzung des MEK-ERK-abhängig gesteuerten transkriptionellen Netzwerks und seine Veränderung im Zuge der HRAS-vermittelten onkogenen Transformation von HA1-Zellen untersucht. Viele Arbeiten haben sich bereits eingehend mit der Charak-terisierung einzelner Komponenten und Zielgene beschäftigt (Wagner et al. 2005, Reddy et al. 2002, Sun et al. 2006, Kapitel 1). Im Unterschied zu den zitierten Studien wurde in der vorliegenden Arbeit ein umfassendes Protokoll zur genomweiten De-chiffrierung transkriptioneller Netzwerke unter Kombination von experimentellen und bioinformatischen Methoden entwickelt und durchgeführt. Die Analyse ge-nomweiter Expressionsprofile un- und U0126-behandelter immortaler und HRASV12-transformierter humaner Nierenepithelzellen (HA1EB, HA1ER) erlaubte die Identifi-zierung von 138 auf- und 103 abregulierten genspezifischen IDs der RAS-ERK-abhängig gesteuerten Signalkaskade. Regulierte Transkriptionsfaktoren wurden i-dentifiziert und im Westernblot, sowie zum Teil mittels Durchflusszytometrie und RT-PCR validiert und nachfolgend transienten siRNA-Experimenten unterzogen. Für die Transkriptionsfaktoren ELK3, SRF und den hierarisch darunter liegenden Faktor FRA1 wurden Expressionsprofile der spezifischen siRNA-vermittelten Hemmung in beiden Zelllinien erstell und mit bioinformatischen Methoden (TRAP, GSEA-GO) a-nalysiert um direkte und indirekte sowie gemeinsame Zielgene zu ermitteln. Zusätz-lich wurde der Effekt auf phänotypischer Ebene (Softagar, MTT) überprüft. In der vorliegenden Arbeit ließ sich keine direkte Hierarchie der drei Transkrip-tionsfaktoren SRF, FRA1 und ELK3 bestätigen. Allerdings konnte zum ersten Mal eine gemeinsam regulierte Gruppe von Genen identifiziert werden, die darauf schließen lässt, dass die drei Transkriptionsfaktoren sowohl in HA1EB, als auch in HA1ER Teile eines gemeinsam regulierenden Netzwerks sind. Aus den Proliferationsexperimenten wurde zudem bestätigt, dass jeder Transkriptionsfaktor individuell eine essentielle Rolle bei der Promotion maligner Eigenschaften spielt. Für alle drei Transkriptionsfak-toren konnte eine RAS-abhängige starke Verschiebung der spezifisch angesteuerten Gene nachgewiesen werden. Diese Verschiebung wurde mittels TRAP und GSEA auch für alternative Regulatoren der spezifischen Zielgene festgestellt. Die nähere Analyse der FRA1-abhängigen Zielgene führte zu neuen Erkenntnis-sen zur Umordnung des Transkriptoms im Zuge der onkogenen Transformation. Die FRA1-spezifischen Zielgene in HA1EB und HA1ER weisen unterschiedliche Funktio-nalitäten auf. So wurden in HA1EB viele Gene identifiziert, die im Rahmen der Im-munantwort eine Rolle spielen und in HA1ER nicht reguliert werden. In den RAS-transformierten HA1ER konnten dagegen Gene identifiziert werden, die in der Tu-morprogression eine Rolle spielen (FRA1, STAT3, MTA1, TCFL5). Die Verifizierungen mittels qPCR und ChIP bestätigten 5 der 38 möglichen FRA1-Zielgene. Von diesen, FRA1, AEBP1, FRA1, TCFL5, NPAS2 und YWHAZ ist lediglich FRA1 bereits als FRA1-Zielgen beschrieben. Die Funktionen der neu identifizierten RAS-abhängigen FRA1-Zielgene untermauerten bereits bekannte Funktionen der FRA1-vermittelten Transkription (Differenzierung, Proliferation, zirkadiane Rhythmen, Apoptose) und erweitern sie um verschiedene Aspekte wie Metabolismus und Rückkopplungen in die Signaltransduktion, die noch nicht für die RAS-abhängige FRA1-vermittelte Transktiption beschrieben worden sind. Dazu gehören unter anderem Interaktionen mit TGFbeta, WNT, JAK/STAT und JNK. Daneben sind in den HA1ER eine Vielzahl von Regulatoren des RHO-Signalwegs identifiziert worden, was für FRA1 auf bisher unbekannte Interaktionen mit RAC/RHO-Signalwegen schließen lässt. / Transcriptional networks represent the final level of internal signal transmission. They are embedded in different signalling pathways and use genetic as well as epi-genetic mechanisms to regulate their according target genes. During oncogenic trans-formation they are undergoing massive rearrangements in composition, regulation and interaction. This leads to radical changes in the transcriptome and drives the on-cogenic phenotype of the according cells. My thesis employs the composition of the MEK-ERK-dependent transcriptional net-work and its alteration during the HRAS-oncogene-mediated transformation in HA1-cells. By commencing from already known components: SRF, Ternary Complex Fac-tors (TCF: SAP1, SAP2/ELK3, ELK1) and members of the AP1-complex (JUN, FOS-proteins) I analyzed the alteration in expression of secondary targets and their inter-action as well as their relation to the superior factors. Therefore I compared genome wide expression profiles (Affymetrix, HG-U133A) of immortal HA1EB and HRASV12-oncogene-transformed HA1ER-cells with and without U0126-induced MEK/ERK-inhibition and extracted several MEK/ERK-dependent transcription factors. Among them where FRA1 and ELK3, two transcription factors already known to be involved in oncogenesis and proliferation associated processes. ELK3 needs SRF as crucial binding partner to function. Therefor I also included SRF into the subsequent analysis. The three transcription factors function in different time-dependent hierarchy states so we supposed a putative hierachical network be-tween them. I established transient knockdown cells deriving from HA1EB and HA1ER for all three transcription factors and generated further expression profiles from them. Additionally I verified the importance of these transcription factors on survival and proliferation via MTT and Softagar experiments. Using different statis-tically and bioinformatical methods (GSEA, TRAP) in collaboration with the Max-Planck-Institute for molecular Genetics Berlin, several direct and indirect targets of these transcription factors were predicted. These were partially overlapping in all transcription factors. Also, in comparison of the immortal and the transformed cell line, a shift of functionalities and composition of the different target gene populations and collaborating factors could be detected for all three transcription factors. It was found that in HA1EB FRA1 seems more likely to regulate immunresponsive genes as well as genes associated with the cytoskeleton and nucleus organisation whereas in HA1ER FRA1 regulates a large group of transcription- and signalling-associated genes. Additionally it could be shown that in both cell lines FRA1 regulates genes in-volved in epigenetic processes as well as circadian rhythms which are known to be important aspects in oncogenic transformation. I verified 37 different putative target genes of FRA1 using qRT-PCR (Taqman) and partially also ChIP-analysis. Of these 37genes, 5 were fully validated as directly regu-lated targets of FRA1: FRA1, AEBP1, YWHAZ, NPAS2 and TCFL5. They imply functionalities connected to proliferation and differentiation (AEBP1, FRA1, TCFL5) as well as apoptosis (YWHAZ) cell cycle control and circadian rhythm (NPAS2, AEBP1), feedbacks into the signalling (YWHAZ, AEBP1) and metabolism (NPAS2, AEBP1). Summarised the work of this thesis contributes to the decipherment of the direct and indirect targets of the according transcription factors and strengthens the argument of a general and massive shift of the transcriptional network during oncogenic trans-formation of cells. The importance of all three transcription factors on the survival of genes could be proved via proliferation assays. Additionally the functionality of their according targets could be integrated into processes connected to oncogenic trans-formation.
|
14 |
Transcription factors and downstream genes modulating TNF-gas + IFN-gcs induced beta cell apoptosisBarthson, Jenny 08 April 2013 (has links)
In type 1 diabetes (T1D) a combination of genetic predisposition and environmental factors triggers islet inflammation (insulitis) leading to a selective and gradual destruction of the pancreatic beta cells. Beta cells mainly die through apoptosis, triggered at least in part by pro-inflammatory cytokines such as IL-1β, TNF-α and IFN-γ. Recent findings suggest that the mitochondrial pathway of cell death is involved in this death cascade. Array analysis indicated that TNF-α+IFN-γ induces transcription factors such as NF-ĸB, STAT1, and AP-1 in beta cells. We presently aimed to examine the pathway(s) of apoptosis triggered by TNF-α+IFN-γ in beta cells. <p>TNF-α+IFN-γ induces beta cell apoptosis through the intrinsic pathway of cell death. This involved activation of the BH3 only proteins DP5, PUMA and Bim. Knockdown (KD) of either DP5 or PUMA or both led to a partial protection of INS-1E cells (12-20%), while silencing Bim led to about 60% protection against cytokine-induced apoptosis. Bim is transcriptionally induced by activated STAT1. TNF-α+IFN-γ also induces downregulation of Bcl-XL, an anti-apoptotic Bcl-2 gene which inhibits Bim. Knocking down Bcl-XL alone led to increase in apoptosis, but this was prevented by the parallel KD of Bim.<p>The ultimate goal of our research is to protect beta cells from the autoimmune assault. Previous data revealed that JunB inhibits ER stress and apoptosis in beta cells treated with IL-β+IFN-γ. Here, TNF-α+IFN-γ up-regulated the expression of JunB which was downstream of activated NF-ĸB. JunB KD exacerbated TNF-α+IFN-γ induced beta cell death in primary rat beta cells and INS-1E cells. The gene networks affected by JunB were studied by microarray analysis. JunB regulates 20-25% of the cytokine-modified beta cell genes, including the transcription factor ATF3 and Bcl-XL. ATF3 expression was increased in cytokine-treated human islets and in vitro silencing of JunB led to >60% reduction in ATF3 overexpression. We confirmed direct JunB regulation of the ATF3 promoter by its binding to an ATF/CRE site. Silencing of ATF3 aggravated TNF-α+IFN-γ induced cell death in beta cells and led to the downregulation of Bcl-XL expression in INS-1E cells. Pharmacological upregulation of JunB using forskolin led to upregulation of ATF3 and consistent protection of these cells against cytokine-induced cell death, while genetic overexpression of JunB in mice increased ATF3 expression in the pancreatic islets and reversed the pro-apoptotic effects of cytokines on beta cells (±40 % protection). <p>As a whole, our findings indicate that TNF-α+IFN-γ triggers beta cell apoptosis by the upregulation of the pro-apoptotic protein Bim and downregulation of the Bcl-XL protein. These deleterious effects are at least in part antagonized by JunB via activation of ATF3. <p><p>Dans le diabète de type 1 (DT1), la combinaison de facteurs génétiques de prédisposition et de l'environnement déclenche l'inflammation des îlots de Langerhans (insulite) conduisant à une destruction sélective et progressive des cellules bêta du pancréas. Les cellules bêta meurent principalement d’apoptose, déclenchée au moins en partie par les cytokines pro-inflammatoires sécrétées par les cellules immunitaires comme l’IL-β, le TNF-α l’IFN-γ. De récentes découvertes suggèrent que la voie mitochondriale de la mort cellulaire jouerait un rôle dans la mort de ces cellules. L'analyse de réseaux de gène utilisant les biopuces d’ADN indique que l’association TNF-α+IFN-γ induit l’activation de facteurs de transcription tels que NF-ĸB, STAT1 et AP-1 dans la cellule bêta. Dans ce contexte, nous avons cherché à examiner les voies de l'apoptose déclenchées par le TNF-α+IFN-γ dans la cellule bêta. <p>En présence de TNF-α+IFN-γ les cellules bêta meurent par apoptose via la voie intrinsèque. L’activation des protéines pro-apoptotiques « BH3-seulement » dont DP5, PUMA et Bim étaient en cause de cette apoptose. Le « knockdown »1 (KD), de DP5 ou de PUMA, ou des deux en même temps conduit à une protection partielle des cellules INS-1E (12-20%), tandis que le KD de Bim conduit à environ 60% de protection contre l’apoptose induite par cette combinaison de cytokines. La transcription de Bim est induite par STAT1 activé. Parallèlement à la régulation positive de Bim, TNF-α+IFN-γ conduit à la régulation négative de la protéine Bcl-XL. Bcl-XL est une protèine anti-apoptotique de la famille de protèines Bcl-2 qui en general inhibe Bim. Réduire l’expression de Bcl-XL seul induit une augmention de l'apoptose, alors que le KD de Bim et Bcl-XL en parallèle empêche l'apoptose.<p>Le but ultime de notre recherche est de protéger les cellules bêta des agressions autoimmunitaires. Les données antérieures ont révélé que JunB inhibe le stress du réticulum endoplasmique et l'apoptose dans les cellules bêta traitées avec IL-β+IFN-γ. Nous avons observé que TNF-α+IFN-γ induit l'expression de JunB qui se produit en aval de NF-ĸB activé. Il est important de noter que l’inactivation de JunB par des agents interférants de l’ARN (siRNA) exacerbe la mort des cellules primaires bêta de rat et de cellules INS-1E induite par les cytokines. Les réseaux de gènes touchés par JunB ont été étudiés grâce a l'analyse en microréseaux. JunB règule 20-25% des gènes modifiés par des cytokines dans les cellules bêta, y compris le facteur de transcription ATF3 et Bcl-XL. L’expression d’ATF3 est augmenté dans les îlots humains traités avec les cytokines et la répression in vitro de JunB conduit à une réduction de >60% de l’expression d’ATF3. Nous avons confirmé la régulation d’ATF3 par JunB en montrant que JunB est directement lié au promoteur d’ATF3 via le site ATF/CRE. La diminution d’expression d’ATF3 en presence de TNF-α+IFN-γ a aggravé la mort cellulaire induite dans les cellules bêta et a conduit à la régulation négative de l'expression de Bcl-XL dans les cellules INS-1E. L’augmentation pharmacologique de JunB dans les cellules INS-1E par l’utilisation de forskolin a conduit à la régulation positive en aval d’ATF3 et par conséquente à la protection de cellules bêta vis-a-vis de effets indésirables des cytokines. Dans cette optique, la surexpression génétique de JunB dans le modèle Ubi-JunB de souris transgénique a conduit à une surexpression d’ATF3 dans les îlots pancréatiques et a permir d’inverser les effets pro-apoptotiques de cytokines sur la cellule bêta (protection ± 40%).<p>Globalement, ces résultats indiquent que TNF-α+IFN-γ déclenche l'apoptose des cellules bêta par la régulation positive du gène pro-apoptotique Bim et la régulation négative du gène anti-apoptotique Bcl-XL. Ces effets indésirables sont inhibé en partie par JunB via l’activation de ATF3.<p><p>1Pas d’équivalent en français. Signifie la réduction de l’expression d’un gène via utilisation d’un siRNA (agent interférant de l’ARN).<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0267 seconds