• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 2
  • Tagged with
  • 31
  • 31
  • 20
  • 12
  • 10
  • 9
  • 9
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

L'Approximation diophantienne simultanée et l'optimisation discrète

Rodriguez Caballero, José Manuel 12 1900 (has links)
Étant donnée une fonction bornée (supérieurement ou inférieurement) $f:\mathbb{N}^k \To \Real$ par une expression mathématique, le problème de trouver les points extrémaux de $f$ sur chaque ensemble fini $S \subset \mathbb{N}^k$ est bien défini du point de vu classique. Du point de vue de la théorie de la calculabilité néanmoins il faut éviter les cas pathologiques où ce problème a une complexité de Kolmogorov infinie. La principale restriction consiste à définir l'ordre, parce que la comparaison entre les nombres réels n'est pas décidable. On résout ce problème grâce à une structure qui contient deux algorithmes, un algorithme d'analyse réelle récursive pour évaluer la fonction-coût en arithmétique à précision infinie et un autre algorithme qui transforme chaque valeur de cette fonction en un vecteur d'un espace, qui en général est de dimension infinie. On développe trois cas particuliers de cette structure, un de eux correspondant à la méthode d'approximation de Rauzy. Finalement, on établit une comparaison entre les meilleures approximations diophantiennes simultanées obtenues par la méthode de Rauzy (selon l'interprétation donnée ici) et une autre méthode, appelée tétraédrique, que l'on introduit à partir de l'espace vectoriel engendré par les logarithmes de nombres premiers. / Given a (lower or upper) bounded function $f:\mathbb{N}^k \To \Real$ by a mathematical expression. The problem to find the extremal points of $f$ on any bounded set $S \subset \mathbb{N}^k$ is well-defined from a classical point of view. Nevertheless, from a computability theory perspective, it should be avoided the possibility of pathologies when this problem has infinite Kolmogorov complexity. The main constraint is that the order relationship between computable reals is not effectively solvable. We solve this problem by means of a structure containing two algorithms. The first one allows to evaluate the cost function while the second one transforms each value of the cost function in a point in an infinite dimensional vector of a space. We develop three particular cases, one of them corresponding to the Rauzy approximation method. Finally, we make a comparison between the best simultaneous Diophantine approximations obtained by the Rauzy method (our optimization-oriented version of it) and our tetrahedral method, that is one of the main achievement of this work.
22

Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini / Some contributions at the study of Laurent series with coefficients in a finite field

Firicel, Alina 08 December 2010 (has links)
Cette thèse se situe à l'interface de trois grands domaines : la combinatoire des mots, la théorie des automates et la théorie des nombres. Plus précisément, nous montrons comment des outils provenant de la combinatoire des mots et de la théorie des automates interviennent dans l'étude de problèmes arithmétiques concernant les séries formelles à coefficients dans un corps fini.Le point de départ de cette thèse est un célèbre théorème de Christol qui caractérise les séries de Laurent algébriques sur le corps F_q(T), l'entier q désignant une puissance d'un nombre premier p, en termes d'automates finis et dont l'énoncé est : « Une série de Laurent à coefficients dans le corps fini F_q est algébrique si et seulement si la suite de ses coefficients est engendrée par un p-automate fini ». Ce résultat, qui révèle dans un certain sens la simplicité de ces séries de Laurent, a donné naissance à des travaux importants parmi lesquels de nombreuses applications et généralisations.L'objet principal de cette thèse est, dans un premier temps, d'exploiter la simplicité de séries de Laurent algébriques à coefficients dans un corps fini afin d'obtenir des résultats diophantiens, puis d'essayer d'étendre cette étude à des fonctions transcendantes arithmétiquement intéressantes. Nous nous concentrons tout d'abord sur une classe de séries de Laurent algébriques particulières qui généralisent la fameuse cubique de Baum et Sweet. Le résultat principal obtenu pour ces dernières est une description explicite de leur développement en fraction continue, généralisant ainsi certains travaux de Mills et Robbins. Rappelons que le développement en fraction continue permet généralement d'obtenir des informations très précises sur l'approximation rationnelle ; les meilleures approximations étant obtenues directement à partir de la suite des quotients partiels. Malheureusement, il est souvent très difficile d'obtenir le développement en fraction continue d'une série de Laurent algébrique, que celle-ci soit donné par une équation algébrique ou par son développement en série de Laurent. La deuxième étude que nous présentons dans cette thèse fournit une information diophantienne à priori moins précise que la description du développement en fraction continue, mais qui a le mérite de concerner toutes les séries de Laurent algébriques (à coefficients dans un corps fini). L'idée principale est d'utiliser l'automaticité de la suite des coefficients de ces séries de Laurent afin d'obtenir une borne générale pour leur exposant d'irrationalité. Malgré la généralité de ce résultat, la borne obtenue n'est pas toujours satisfaisante. Dans certains cas, elle peut s'avérer plus mauvaise que celle provenant de l'inégalité de Mahler. Cependant, dans de nombreuses situations, il est possible d'utiliser notre approche pour fournir, au mieux, la valeur exacte de l'exposant d'irrationalité, sinon des encadrements très précis de ce dernier.Dans un dernier travail nous nous plaçons dans un cadre plus général que celui des séries de Laurent algébriques, à savoir celui des séries de Laurent dont la suite des coefficients a une « basse complexité ». Nous montrons que cet ensemble englobe quelques fonctions remarquables, comme les séries algébriques et l'inverse de l'analogue du nombre \pi dans le module de Carlitz. Il possède, par ailleurs, des propriétés de stabilité intéressantes : entre autres, il s'agit d'un espace vectoriel sur le corps des fractions rationnelles à coefficients dans un corps fini (ce qui, d'un point de vue arithmétique, fournit un critère d'indépendance linéaire), il est de plus laissé invariant par diverses opérations classiques comme le produit de Hadamard / This thesis looks at the interplay of three important domains: combinatorics on words, theory of finite-state automata and number theory. More precisely, we show how tools coming from combinatorics on words and theory of finite-state automata intervene in the study of arithmetical problems concerning the Laurent series with coefficients in a finite field.The starting point of this thesis is a famous theorem of Christol which characterizes algebraic Laurent series over the field F_q(T), q being a power of the prime number p, in terms of finite-state automata and whose statement is the following : “A Laurent series with coefficients in a finite field F_q is algebraic over F_q(T) if and only if the sequence of its coefficients is p-automatic”.This result, which reveals, somehow, the simplicity of these Laurent series, has given rise to important works including numerous applications and generalizations. The theory of finite-state automata and the combinatorics on words naturally occur in number theory and, sometimes, prove themselves to be indispensable in establishing certain important results in this domain.The main purpose of this thesis is, foremost, to exploit the simplicity of the algebraic Laurent series with coefficients in a finite field in order to obtain some Diophantine results, then to try to extend this study to some interesting transcendental functions. First, we focus on a particular set of algebraic Laurent series that generalize the famous cubic introduced by Baum and Sweet. The main result we obtain concerning these Laurent series gives the explicit description of its continued fraction expansion, generalizing therefore some articles of Mills and Robbins.Unfortunately, it is often very difficult to find the continued fraction representation of a Laurent series, whether it is given by an algebraic equation or by its Laurent series expansion. The second study that we present in this thesis provides a Diophantine information which, although a priori less complete than the continued fraction expansion, has the advantage to characterize any algebraic Laurent series. The main idea is to use some the automaticity of the sequence of coefficients of these Laurent series in order to obtain a general bound for their irrationality exponent. In the last part of this thesis we focus on a more general class of Laurent series, namely the one of Laurent series of “low” complexity. We prove that this set includes some interesting functions, as for example the algebraic series or the inverse of the analogue of the real number \pi. We also show that this set satisfy some nice closure properties : in particular, it is a vector space over the field over F_q(T).
23

Propriétés d'ubiquité en analyse multifractale et séries aléatoires d'ondelettes à coefficients corrélés

Durand, Arnaud 25 June 2007 (has links) (PDF)
L'objectif principal de cette thèse est la description des propriétés de taille et de grande intersection des ensembles apparaissant lors de l'analyse multifractale de certains processus stochastiques. Dans ce but, nous introduisons de nouvelles classes d'ensembles à grande intersection associées à des fonctions de jauge générales et nous prouvons, à l'aide de techniques d'ubiquité, des résultats d'appartenance à ces classes pour certains ensembles limsup. Cela nous permet en particulier de décrire exhaustivement les propriétés de taille et de grande intersection des ensembles issus de la théorie classique de l'approximation diophantienne comme l'ensemble des points bien approchables par des rationnels ou l'ensemble des nombres de Liouville. Nous fournissons aussi des résultats du même type lorsque les rationnels intervenant dans l'approximation doivent vérifier certaines conditions, comme les conditions de Besicovitch. Nos techniques d'ubiquité nous permettent en outre de décrire complètement les propriétés de taille et de grande intersection des ensembles intervenant dans l'analyse multifractale des processus de Lévy et d'un modèle de séries lacunaires d'ondelettes. Nous obtenons des résultats similaires pour un nouveau modèle de séries aléatoires d'ondelettes dont les coefficients sont corrélés via une chaîne de Markov indexée par un arbre. Nous déterminons en particulier la loi du spectre de singularités de ce modèle. Pour mener cette étude, nous nous intéressons à une large classe de fractals aléatoires généralisant les constructions récursives aléatoires précédemment introduites par de nombreux auteurs.
24

Contribution à la théorie des entiers friables

Martin, Bruno 11 July 2005 (has links) (PDF)
Un entier naturel est dit $y$-friable lorsque son plus grand facteur premier n'excède pas $y$. Ce travail est consacré à l'étude des entiers friables dans le cadre de la théorie analytique et probabiliste des nombres. La première partie est dévolue à un problème posé par Davenport en 1937, qui consiste à déterminer les conditions de validité de diverses généralisations de son développement de la fonction sinus en série de parties fractionnaires. Ces généralisations peuvent être décrites par un couple de fonctions arithmétiques, liées par la relation de convolution $f=g*\1$. Nous traitons le cas où $g$ est la fonction de Piltz d'ordre $z\in\CC$. La deuxième partie est consacrée à l'étude du comportement asymptotique de la constante optimale dans une version friable de l'inégalité de Turán-Kubilius. Précisant des résultats récents de La Bretèche et Tenenbaum, nous généralisons au cas friable une formule asymptotique de la variance d'une fonction arithmétique additive, établie par Hildebrand en 1983.
25

Deux problèmes de décompte diophantien / Two Diophantine counting problems

Ange, Thomas 28 September 2015 (has links)
Nous traitons ici de questions d’effectivité dans les problèmes de Mordell-Lang et de Schanuel où la notion de hauteur algébrique joue un rôle central.Dans un premier temps nous revisitions la méthode de Vojta-Faltings dans un cadre général, en y incluant notamment un procédé de descente uniforme qui permet d’optimiser le nombre de recours au pesant mécanisme d’approximation diophantienne. Nous proposons ensuite une application de ce résultat au problème de Mordell-Lang plus Bogomolov dans le tore, qui consiste à décrire un sousensemble algébrique X comme réunion de translatés de sous-tores inclus dans X moyennant de se restreindre à un sous-groupe de rang fini épaissi. Nous nous appuyons en particulier sur un énoncé d’Amoroso et Viada concernant le problème de Bogomolov dans ce contexte et améliorons les bornes antérieures obtenues par Rémond.Dans un second temps, nous établissons une version du théorème de Schanuel dans le cadre d’un espace adélique hermitien sur un corps de nombres. Nous donnons une estimation asymptotique du nombre de points projectifs de hauteur bornée pour une hauteur définie par une famille de normes sur les complétés en chaque place, vérifiant certaines conditions mais sans hypothèse de pureté dans le cas ultramétrique. Le terme reste obtenu est totalement explicite et linéaire en le régulateur du corps de nombres grâce au recours à une méthode introduite par Schmidt. Nous traitons également plusieurs applications de ce résultat, notamment aux problèmes de Dedekind-Weber et de Loher-Masser. / We are dealing here with effectiveness matters about the Mordell-Lang and Schanuel problems where algebraic heights play a central role.At the first time, we modify the Vojta-Faltings method in a general context by including some uniform descending process which has the advantage to optimize the number of iterations of the heavy Diophantine approximation mechanism. We then propose an application to the toric Mordell-Lang plus Bogomolov problem whose aim is to describe an algebraic subset X as the union of translates of closed, irreducible subgroups included in X when restricted to some enlarged, finite rank subgroup. In particular we use a theorem of Amoroso and Viada about the Bogomolov problem in this context and we improve the previous bound given by Rémond.At the second time, we prove a version of the theorem of Schanuel in the setting of a Hermitian adelic vector bundle over a number field. We give an asymptotic estimate for the number of projective points of bounded height for heights given by a family of norms over the completions at each place, satisfying several conditions but no purity hypothesis in the ultrametric case. The error term is totally explicit and linear with respect to the regulator of the number field through the use of Schmidt’s method. We finally give some applications of our result in particular to the Dedekind-Weber and Loher-Masser problems.
26

Points rationnels d'une famille de sous-schémas fermés dans une variété semi-abélienne / Rational points on a family of closed subschemes of a semiabelian variety

Von Buhren, Jérôme 05 February 2015 (has links)
Soit X un sous-schéma fermé d'une variété abélienne A sur un corps de nombres K. L'ancienne conjecture de Mordell-Lang nous assure que X(K) est une réunion finie de sous-ensembles a_i+Bj(K) où a_i est un point de X(K) et B_i est une sous-variété abélienne de A de sorte que le translaté aj+Bj soit contenu dans X. Dans cette thèse, nous montrerons un résultat permettant de majorer la hauteur des a_i en fonctions de la hauteur de X. On en déduira une majoration pour la hauteur des solutions d'une équation aux unités. En utilisant les mêmes méthodes, on obtiendra une majoration de la même forme pour la hauteur des points entiers d'une variété abélienne(plongé dans un espace projectif) privé d'un hyperplan. / Let be X a closed subscheme of an abelian variety on a number field K. Faltings proved the Mordell-Lang conjecture: there are points a_1 , ... ,a_n in X(K) and abelian subvarieties 8_1 , ... ,B_nin A such that a_i+B_i is in X and X(K) is equal to the union of aj+B_i(K). In this thesis, we proof a result wich gives a bound for the height of the point a_i with the height of X. We obtain a bound for the solutions of an unit equation. With the same method, we proof a similar result for the height of the integers points on an abelian variety (embedded in a projective space) minus a hyperplane.
27

Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs / Diophantine approximation on projective varieties and on commutative algebraic groups

Ballaÿ, François 25 October 2017 (has links)
Dans cette thèse, nous appliquons des outils issus de la théorie d’Arakelov à l’étude de problèmes de géométrie diophantienne. Une notion centrale dans notre étude est la théorie des pentes des fibrés vectoriels hermitiens, introduite par Bost dans les années 90. Nous travaillons plus précisément avec sa généralisation dans le cadre adélique, inspirée par Zhang et développée par Gaudron. Ce mémoire s’articule autour de deux axes principaux. Le premier consiste en l’étude d’un remarquable théorème de géométrie diophantienne dû à Faltings etWüstholz, qui généralise le théorème du sous-espace de Schmidt. Nous commencerons par retranscrire la démonstration de Faltings et Wüstholz dans le langage de la théorie des pentes. Dans un second temps, nous établirons des variantes effectives de ce théorème, que nous appliquerons pour démontrer une généralisation effective du théorème de Liouville valable pour les points fermés d’une variété projective fixée. Ce résultat fournit en particulier une majoration explicite de la hauteur des points satisfaisant une inégalité analogue à celle du théorème de Liouville classique. Dans la seconde partie de cette thèse, nous établirons de nouvelles mesures d’indépendance linéaire de logarithmes dans un groupe algébrique commutatif, dans le cas dit rationnel.Notre approche utilise les arguments de la méthode de Baker revisitée par Philippon et Waldschmidt, combinés avec des outils de la théorie des pentes. Nous y intégrons un nouvel argument, inspiré par des travaux antérieurs de Bertrand et Philippon, nous permettant de contourner les difficultés introduites par le cas périodique. Cette approche évite le recours à une extrapolation sur les dérivations à la manière de Philippon et Waldschmidt. Nous parvenons ainsi à supprimer une hypothèse technique contraignante dans plusieurs théorèmes de Gaudron, tout en précisant les mesures obtenues. / In this thesis, we study diophantine geometry problems on projective varieties and commutative algebraic groups, by means of tools from Arakelov theory. A central notion in this work is the slope theory for hermitian vector bundles, introduced by Bost in the 1990s. More precisely, we work with its generalization in an adelic setting, inspired by Zhang and developed by Gaudron. This dissertation contains two major lines. The first one is devoted to the study of a remarkable theorem due to Faltings and Wüstholz, which generalizes Schmidt’s subspace theorem. We first reformulate the proof of Faltings and Wüstholz using the formalism of adelic vector bundles and the adelic slope method. We then establish some effective variants of the theorem, and we deduce an effective generalization of Liouville’s theorem for closed points on a projective variety defined over a number field. In particular, we give an explicit upper bound for the height of the points satisying a Liouville-type inequality. In the second part, we establish new measures of linear independence of logarithms over a commutative algebraic group. We focus our study on the rational case. Our approach combines Baker’s method (revisited by Philippon and Waldschmidt) with arguments from the slope theory. More importantly, we introduce a new argument to deal with the periodic case, inspired by previous works of Bertrand and Philippon. This method does not require the use of an extrapolation on derivations in the sense of Philippon-Waldschmidt. In this way, we are able to remove an important hypothesis in several theorems of Gaudron establishing lower bounds for linear forms in logarithms.
28

Applications de la géométrie paramétrique des nombres à l'approximation diophantienne / Applications of parametric geometry in diophantine approximation

Poëls, Anthony 18 May 2018 (has links)
Pour un réel ξ qui n’est pas algébrique de degré ≤ 2, on peut définir plusieurs exposants diophantiens qui mesurent la qualité d’approximation du vecteur (1, ξ, ξ² ) par des sous-espaces de ℝ³ définis sur ℚ de dimension donnée. Cette thèse s’inscrit dans l’étude de ces exposants diophantiens et des questions relatives à la détermination de leur spectre. En utilisant notamment les outils modernes de la géométrie paramétrique des nombres, nous construisons une nouvelle famille de réels – appelés nombres de type sturmien – et nous déterminons presque complètement le 3-système qui leur est associé. Comme conséquence, nous en déduisons la valeur de leurs exposants diophantiens et certaines informations sur les spectres. Nous considérons également le problème plus général de l’allure d’un 3-système associé à un vecteur de la forme (1, ξ, ξ ²), en formulant entre autres certaines contraintes qui n’existent pas pour un vecteur (1, ξ, η) quelconque, et en explicitant les liens qu’il entretient avec la suite des points minimaux associée à ξ. Sous certaines conditions de récurrence sur la suite des points minimaux nous montrons que nous retrouvons les 3-systèmes associés aux nombres de type sturmien. / Given a real number ξ which is not algebraic of degree ≤ 2 one may defineseveral diophantine exponents which measure how “well” the vector (1, ξ, ξ ²) can be approximated by subspaces of fixed dimension defined over ℚ. This thesis is part of the study of these diophantine exponents and their spectra. Using the parametric geometry of numbers, we construct a new family of numbers – called numbers of sturmian type – and we provide an almost complete description of the associated 3-system. As a consequence, we determine the value of the classical exponents for numbers of sturmian type, and we obtain new information on their joint spectra. We also take into consideration a more general problem consisting in describing a 3-system associated with a vector (1, ξ, ξ²). For instance we formulate special constraints which do not exist for a general vector (1, ξ, η) and we also clarify connections between a 3-system which represents ξ and the sequence of minimal points associated to ξ. Under a specific recurrence relation hypothesis on the sequence of minimal points, we show that the previous 3-system has the shape of a 3-system associated to a number of sturmian type.
29

Empilements de sphères et bêta-entiers

Verger-Gaugry, Jean-Louis 09 June 2006 (has links) (PDF)
Les objets considérés dans cette thèse sont les empilements de sphères égales, principalement de $R^n$, et les beta-entiers, pour lesquels on utilise indifféremment le langage des empilements de sphères ou celui des ensembles uniformément discrets pour les décrire. Nous nous sommes concentrés sur les problèmes suivants : (i) aspects métriques et topologiques de l'espace des empilements de sphères pour lequels nous prouvons un théorème de compacité qui généralise le Théorème de Sélection de Mahler relatif aux réseaux, (ii) les relations entre trous profonds et la densité par la constante de Delone ainsi que la structure interne asymptotique, en couches, des empilements les plus denses, (iii) les empilements autosimilaires de type fini pour lesquels nous montrons, pour chacun, l'existence d'un schéma de coupe-et-projection associé à un entier algébrique (l'autosimilarité) dont le degré divise le rang de l'empilement, dans le contexte des quasicristaux mathématiques, (iv) les empilements de sphères sur beta-réseaux, dont l'étude a surtout consisté à comprendre l'ensemble discret localement fini $Z_\beta$ des beta-entiers et à proposer une classification des nombres algébriques qui complémente celle de Bertrand-Mathis, reportée dans un article de Blanchard, et où la mesure de Mahler de beta intervient naturellement.
30

Sur le théorème de Schneider-Lang

Herblot, Mathilde 01 December 2011 (has links) (PDF)
Le théorème de Schneider-Lang est un critère classique de transcendance pour des nombres complexes. Il dit que des fonctions méromorphes d'ordre fini, vérifiant une équation différentielle polynomiale à coefficients dans un corps de nombres et algébriquement indépendantes ne peuvent prendre simultanément des valeurs dans ce corps de nombres qu'en un nombre fini de points. Dans cette thèse, nous démontrons des généralisations géométriques de ce critère, valables sur le corps des nombres complexes ou sur un corps p-adique. Ces résultats s'appuient sur des lemmes de Schwarz adaptés, que nous avons établis. En dimension 1, nous démontrons un théorème concernant des sous-schémas formels admettant une uniformisation par une courbe algébrique affine. En dimension supérieure, notre théorème s'applique à des sous-schémas formels admettant une uniformisation par un produit d'ouverts de la droite affine, sous l'hypothèse supplémentaire que l'ensemble des points étudiés est un produit cartésien. Les démonstrations de ces résultats reposent sur la méthode des pentes développée par J.-B. Bost et utilisent le langage de la géométrie d'Arakelov.

Page generated in 0.124 seconds