• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1029
  • 185
  • 34
  • 24
  • 24
  • 24
  • 19
  • 14
  • 5
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 1260
  • 1021
  • 595
  • 413
  • 219
  • 179
  • 175
  • 151
  • 146
  • 135
  • 130
  • 129
  • 124
  • 123
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
701

Aprendizado de máquina para análise de recaída para depressão em pacientes com transtorno bipolar / Machine learning to analyse depression relapse in bipolar disorder patients

Borges Júnior, Renato Gomes 04 October 2018 (has links)
Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-11-01T11:52:17Z No. of bitstreams: 2 Dissertação - Renato Gomes Borges Júnior - 2018.pdf: 2871076 bytes, checksum: fe8f76b09f6d264386f643ee3195313e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-01T15:47:35Z (GMT) No. of bitstreams: 2 Dissertação - Renato Gomes Borges Júnior - 2018.pdf: 2871076 bytes, checksum: fe8f76b09f6d264386f643ee3195313e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-11-01T15:47:35Z (GMT). No. of bitstreams: 2 Dissertação - Renato Gomes Borges Júnior - 2018.pdf: 2871076 bytes, checksum: fe8f76b09f6d264386f643ee3195313e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-10-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Depression relapse in patients with Bipolar Disorder (BD) have 70% rate of recurrence in the first 4 years of treatment and may cause a severe loss of quality of life and even lead to suicide. BD is a mood disorder characterized by recurrent episodes of depression or mania. To study the disorder and find more efficient treatments, the Harvard Medical School created the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). It is a widely used dataset that comprises data of 4,360 patients with BD, which can be considered one of the most complete databases in terms of scope nowadays. Several studies have been developed to discover more efficient treatments to prevent relapses in BD. However, most of them used only classical statistical methods, mainly aimed at measuring its correlation to specific features. This study presents an analysis of the use of machine learning algorithms to discover patterns related to depression relapse in BD with the use of longitudinal data provided by STEP-BD. This longitudinal data includes 148 features collected in 50,987 visits of patients spread across different weeks over the years. Thus, several experiments were conducted and the results show that the algorithms attained limited performance. We concluded that features related to depression and mania mood states, collected by the STEP-BD, cannot be used properly to predict the relapse to depression before it occurs, being suited only as an indicator that the patient is already in the state of depression. / A recaída para depressão em pacientes com Transtorno Afetivo Bipolar (TAB) atinge taxas de 70% de recorrência nos 4 primeiros anos de tratamento e pode causar uma drástica redução na qualidade de vida e levar até o suicídio. O TAB é uma desordem do humor caracterizada por episódios recorrentes de depressão ou mania. Para estudar o transtorno e encontrar tratamentos mais eficientes, o Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) foi criado pela Escola de Medicina de Harvard. O STEP-BD é um conjunto de dados composto por informações de 4.360 pacientes com TAB, o qual pode ser considerado atualmente uma das mais completas bases de dados em termos de escopo. Vários estudos foram desenvolvidos para descobrir tratamentos mais eficientes para prevenir recaídas. Porém, a maioria destes estudos usaram apenas métodos clássicos de estatística, principalmente com o objetivo de medir a sua correlação com atributos específicos. Este trabalho apresenta uma análise do uso de algoritmos de aprendizado de máquina para encontrar padrões relacionados a recaída para depressão no TAB com o uso de dados longitudinais providos pelo STEP-BD. Estes dados longitudinais incluem 148 atributos coletados em um total de 50.987 visitas de pacientes espalhadas ao longo de semanas durante anos. Assim, diversos experimentos foram conduzidos neste trabalho e os resultados mostram que os algoritmos obtiveram desempenho limitado. Foi possível perceber que atributos relacionados ao estado de humor de depressão e mania, coletados pelo STEP-BD, não podem ser usados propriamente para predizer recaída para depressão antes de sua ocorrência, sendo apropriados apenas para uso como um indicador que o paciente já se encontra no estado de depressão.
702

Uma abordagem visual para apoio ao aprendizado multi-instâncias / A visual approach for support to multi-instances learning

Sonia Castelo Quispe 14 August 2015 (has links)
Aprendizado múltipla instância (MIL) é um paradigma de aprendizado de máquina que tem o objetivo de classificar um conjunto (bags) de objetos (instâncias), atribuindo rótulos só para os bags. Em MIL apenas os rótulos dos bags estão disponíveis para treinamento, enquanto os rótulos das instâncias são desconhecidos. Este problema é frequentemente abordado através da seleção de uma instância para representar cada bag, transformando um problema MIL em um problema de aprendizado supervisionado padrão. No entanto, não se conhecem abordagens que apoiem o usuário na realização desse processo. Neste trabalho, propomos uma visualização baseada em árvore multi-escala chamada MILTree que ajuda os usuários na realização de tarefas relacionadas com MIL, e também dois novos métodos de seleção de instâncias, chamados MILTree-SI e MILTree-Med, para melhorar os modelos MIL. MILTree é um layout de árvore de dois níveis, sendo que o primeiro projeta os bags, e o segundo nível projeta as instâncias pertencentes a cada bag, permitindo que o usuário explore e analise os dados multi-instância de uma forma intuitiva. Já os métodos de seleção de instãncias objetivam definir uma instância protótipo para cada bag, etapa crucial para a obtenção de uma alta precisão na classificação de dados multi-instância. Ambos os métodos utilizam o layout MILTree para atualizar visualmente as instâncias protótipo, e são capazes de lidar com conjuntos de dados binários e multi-classe. Para realizar a classificação dos bags, usamos um classificador SVM (Support Vector Machine). Além disso, com o apoio do layout MILTree também pode-se atualizar os modelos de classificação, alterando o conjunto de treinamento, a fim de obter uma melhor classificação. Os resultados experimentais validam a eficácia da nossa abordagem, mostrando que a mineração visual através da MILTree pode ajudar os usuários em cenários de classificação multi-instância. / Multiple-instance learning (MIL) is a paradigm of machine learning that aims at classifying a set (bags) of objects (instances), assigning labels only to the bags. In MIL, only the labels of bags are available for training while the labels of instances in bags are unknown. This problem is often addressed by selecting an instance to represent each bag, transforming a MIL problem into a standard supervised learning. However, there is no user support to assess this process. In this work, we propose a multi-scale tree-based visualization called MILTree that supports users in tasks related to MIL, and also two new instance selection methods called MILTree-SI and MILTree-Med to improve MIL models. MILTree is a two-level tree layout, where the first level projects bags, and the second level projects the instances belonging to each bag, allowing the user to understand the data multi-instance in an intuitive way. The developed selection methods define instance prototypes of each bag, which is important to achieve high accuracy in multi-instance classification. Both methods use the MILTree layout to visually update instance prototypes and can handle binary and multiple-class datasets. In order to classify the bags we use a SVM classifier. Moreover, with support of MILTree layout one can also update the classification model by changing the training set in order to obtain a better classifier. Experimental results validate the effectiveness of our approach, showing that visual mining by MILTree can help the users in MIL classification scenarios.
703

Classificadores baseados em vetores de suporte gerados a partir de dados rotulados e não-rotulados. / Learning support vector machines from labeled and unlabeled data.

Clayton Silva Oliveira 30 March 2006 (has links)
Treinamento semi-supervisionado é uma metodologia de aprendizado de máquina que conjuga características de treinamento supervisionado e não-supervisionado. Ela se baseia no uso de bases semi-rotuladas (bases contendo dados rotulados e não-rotulados) para o treinamento de classificadores. A adição de dados não-rotulados, mais baratos e geralmente disponíveis em maior quantidade do que os dados rotulados, pode aumentar o desempenho e/ou baratear o custo de treinamento desses classificadores (a partir da diminuição da quantidade de dados rotulados necessários). Esta dissertação analisa duas estratégias para se executar treinamento semi-supervisionado, especificamente em Support Vector Machines (SVMs): formas direta e indireta. A estratégia direta é atualmente mais conhecida e estudada, e permite o uso de dados rotulados e não-rotulados, ao mesmo tempo, em tarefas de aprendizagem de classificadores. Entretanto, a inclusão de muitos dados não-rotulados pode tornar o treinamento demasiadamente lento. Já a estratégia indireta é mais recente, sendo capaz de agregar os benefícios do treinamento semi-supervisionado direto com tempos menores para o aprendizado de classificadores. Esta opção utiliza os dados não-rotulados para pré-processar a base de dados previamente à tarefa de aprendizagem do classificador, permitindo, por exemplo, a filtragem de eventuais ruídos e a reescrita da base em espaços de variáveis mais convenientes. Dentro do escopo da forma indireta, está a principal contribuição dessa dissertação: idealização, implementação e análise do algoritmo split learning. Foram obtidos ótimos resultados com esse algoritmo, que se mostrou eficiente em treinar SVMs de melhor desempenho e em períodos menores a partir de bases semi-rotuladas. / Semi-supervised learning is a machine learning methodology that mixes features of supervised and unsupervised learning. It allows the use of partially labeled databases (databases with labeled and unlabeled data) to train classifiers. The addition of unlabeled data, which are cheaper and generally more available than labeled data, can enhance the performance and/or decrease the costs of learning such classifiers (by diminishing the quantity of required labeled data). This work analyzes two strategies to perform semi-supervised learning, specifically with Support Vector Machines (SVMs): direct and indirect concepts. The direct strategy is currently more popular and studied; it allows the use of labeled and unlabeled data, concomitantly, in learning classifiers tasks. However, the addition of many unlabeled data can lead to very long training times. The indirect strategy is more recent; it is able to attain the advantages of the direct semi-supervised learning with shorter training times. This alternative uses the unlabeled data to pre-process the database prior to the learning task; it allows denoising and rewriting the data in better feature espaces. The main contribution of this Master thesis lies within the indirect strategy: conceptualization, experimentation, and analysis of the split learning algorithm, that can be used to perform indirect semi-supervised learning using SVMs. We have obtained promising empirical results with this algorithm, which is efficient to train better performance SVMs in shorter times from partially labeled databases.
704

Desenvolvimento de um sistema inteligente de tomada de decisão para o gerenciamento energético de uma casa inteligente. / Intelligent decision-making for smart home energy management.

Heider Berlink de Souza 27 February 2015 (has links)
A principal motivação para o surgimento do conceito de Smart Grid é a otimização do uso das redes de energia através da inserção de novas tecnologias de medição, automação e telecomunicações. A implementação desta complexa infra-estrutura produz ganhos em confiabilidade, eficiência e segurança operacional. Além disso, este sistema tem como principais objetivos promover a geração distribuída e a tarifa diferenciada de energia para usuários residenciais, provendo ferramentas para a participação dos consumidores no gerenciamento global do fornecimento de energia. Considerando também o uso de dispositivos de armazenamento de energia, o usuário pode optar por vender ou armazenar energia sempre que lhe for conveniente, reduzindo a sua conta de energia ou, quando a geração exceder a demanda de energia, lucrando através da venda deste excesso. Esta pesquisa propõe um Sistema Inteligente de Suporte à Decisão baseado em técnicas de aprendizado por reforço como uma solução para o problema de decisão sequencial referente ao gerenciamento de energia de uma Smart Home. Resultados obtidos mostram um ganho significativo na recompensa financeira a longo prazo através do uso de uma política obtida pela aplicação do algoritmo Q-Learning, que é um algoritmo de aprendizado por reforço on-line, e do algoritmo Fitted Q-Iteration, que utiliza uma abordagem diferenciada de aprendizado por reforço ao extrair uma política através de um lote fixo de transições adquiridas do ambiente. Os resultados mostram que a aplicação da técnica de aprendizado por reforço em lote é indicada para problemas reais, quando é necessário obter uma política de forma rápida e eficaz dispondo de uma pequena quantidade de dados para caracterização do problema estudado. / The main motivation for the emergence of the Smart Grid concept is the optimization of power grid use by inserting new measurement, automation and telecommunication technologies into it. The implementation of this complex infrastructure also produces gains in reliability, efficiency and operational safety. Besides, it has as main goals to encourage distributed power generation and to implement a differentiated power rate for residential users, providing tools for them to participate in the power grid supply management. Considering also the use of energy storage devices, the user can sell or store the power generated whenever it is convenient, reducing the electricity bill or, when the power generation exceeds the power demand, make profit by selling the surplus in the energy market. This research proposes an Intelligent Decision Support System as a solution to the sequential decision-making problem of residential energy management based on reinforcement learning techniques. Results show a significant financial gain in the long term by using a policy obtained applying the algorithm Q-Learning, which is an on-line Reinforcement Learning algorithm, and the algorithm Fitted Q-Iteration, which uses a different reinforcement learning approach called Batch Reinforcement Learning. This method extracts a policy from a fixed batch of transitions acquired from the environment. The results show that the application of Batch Reinforcement Learning techniques is suitable for real problems, when it is necessary to obtain a fast and effective policy considering a small set of data available to study and solve the proposed problem.
705

Extração automática de termos simples baseada em aprendizado de máquina / Automatic simple term extraction based on machine learning

Merley da Silva Conrado Laguna 06 May 2014 (has links)
A Mineração de Textos (MT) visa descobrir conhecimento inovador nos textos não estruturados. A extração dos termos que representam os textos de um domínio é um dos passos mais importantes da MT, uma vez que os resultados de todo o processo da MT dependerão, em grande parte, da qualidade dos termos obtidos. Nesta tese, considera-se como termos as unidades lexicais realizadas para designar conceitos em um cenário tematicamente restrito. Para a extração dos termos, pode-se fazer uso de abordagens como: estatística, linguística ou híbrida. Normalmente, para a Mineração de Textos, são utilizados métodos estatísticos. A aplicação desses métodos é computacionalmente menos custosa que a dos métodos linguísticos, entretanto seus resultados são geralmente menos interpretáveis. Ambos métodos, muitas vezes, não são capazes de identificar diferenças entre termos e não-termos, por exemplo, os estatísticos podem não identificar termos raros ou que têm a mesma frequência de não-termos e os linguísticos podem não distinguir entre termos que seguem os mesmo padrões linguísticos dos não-termos. Uma solução para esse problema é utilizar métodos híbridos, de forma a combinar as estratégias dos métodos linguísticos e estatísticos, visando atenuar os problemas inerentes a cada um deles. Considerando as características dos métodos de extração de termos, nesta tese, foram investigados métodos estatísticos, formas de obtenção de conhecimento linguístico e métodos híbridos para a extração de termos simples - aqueles constituídos de somente um radical, com ou sem afixos - na língua portuguesa do Brasil. Quatro medidas estatísticas (tvq, tv, tc e comGram), originalmente utilizadas em outras tarefas, foram avaliadas na extração de termos simples, sendo que duas delas (tvq e tv) foram consideradas relevantes para essa tarefa. Quatro novas medidas híbridas (n_subst., n_adj., n_po e n_verbo) foram propostas, sendo que três delas (n_subst,. n_adj., e n_po) auxiliaram na extração de termos. Normalmente os métodos de extração de termos selecionam candidatos a termos com base em algum conhecimento linguístico. Depois disso, eles aplicam a esses candidatos medidas ou combinação de medidas (e/ou heurísticas) para gerar um ranking com tais candidatos. Quanto mais ao topo desse ranking os candidatos estão, maior a chance de que eles sejam termos. A escolha do liminar a ser considerado nesse ranking é feita, em geral de forma manual ou semiautomática por especialistas do domínio e/ou terminólogos. Automatizar a forma de escolha dos candidatos a termos é a primeira motivação da extração de termos realizada nesta pesquisa. A segunda motivação desta pesquisa é minimizar o elevado número de candidatos a termos presente na extração de termos. Esse alto número, causado pela grande quantidade de palavras contidas em um corpus, pode aumentar a complexidade de tempo e os recursos computacionais utilizados para se extrair os termos. A terceira motivação considerada nesta pesquisa é melhorar o estado da arte da extração automática de termos simples da língua portuguesa do Brasil, uma vez que os resultados dessa extração (medida F = 16%) ainda são inferiores se comparados com a extração de termos em línguas como a inglesa (medida F = 92%) e a espanhola (medida F = 68%). Considerando essas motivações, nesta tese, foi proposto o método MATE-ML (Automatic Term Extraction based on Machine Learning) que visa extrair automaticamente termos utilizando técnicas da área de aprendizado de máquina. No método MATE-ML, é sugerido o uso de filtros para reduzir o elevado número de candidatos a termos durante a extração de termos sem prejudicar a representação do domínio em questão. Com isso, acredita-se que os extratores de termos podem gerar listas menores de candidatos extraídos, demandando, assim , menos tempo dos especialistas para avaliar esses candidatos. Ainda, o método MATE-ML foi instanciado em duas abordagens: (i) ILATE (Inductive Learning for Automatic Term Extraction), que utiliza a classificação supervisionada indutiva para rotular os candidatos a termos em termos e não termos, e (ii) TLATE (Transductive Learning for Automatic Term Extraction), que faz uso da classificação semissupervisionada transdutiva para propagar os rótulos dos candidatos rotulados para os não rotulados. A aplicação do aprendizado transdutivo na extração de termos e a aplicação ao mesmo tempo de um conjunto rico de características de candidatos pertencentes a diferentes níveis de conhecimento - linguístico, estatístico e híbrido também são consideradas contribuições desta tese. Nesta tese, são discutidas as vantagens e limitações dessas duas abordagens propostas, ILATE e TLATE. Ressalta-se que o uso dessas abordagens alcança geralmente resultados mais altos de precisão (os melhores casos alcançam mais de 81%), altos resultados de cobertura (os melhores casos atingem mai de 87%) e bons valores de medida F (máximo de 41%) em relação aos métodos e medidas comparados nas avaliações experimentais realizadas considerando três corpora de diferentes domínios na língua portuguesa do Brasil / Text Mining (TM) aims at discovering innovating knowledge in unstructured texts. The extraction of terms that represent that texts of a specific domain is one of the most important steps of TM, since the results of the overall TM process will mostly depend on the quality of these terms. In this thesis, we consider terms as lexical units used to assign concepts in thematically restricted scenarios. The term extraction task may use approaches such as: statistical, linguistic, or hybrid. Typically, statistical methods are the most common for Text Mining. These methods are computationally less expensive than the linguistic ones, however their results tend to be less human-interpretable. Both methods are not often capable of identifying differences between terms and non-terms. For example, statistical methods may not identify terms that have the same frequency of non-terms and linguistic methods may not distinguish between terms that follow the same patterns of non-terms. One solution to this problem is to use hybrid methods, combining the strategies of linguistic and ststistical methods, in order to attenuate their inherent problems. Considering the features of the term extraction methods, in this thesis, we investigated statistical melhods, ways of obtaining linguistic knowledge, and hybrid methods for extracting simple terms (only one radical, with or without the affixes) for the Braziian Portuguese language. We evaluated, in term extraction, four new hybrid measures (tvq, tv, and comGram) originally proposed for other tasks; and two of them (tvq and tv) were considered relevant for this task. e proposed four new hybrid measures(n_subs., n_adj., n_po, and n_verb); and there of them (n_subst., n_adj., and n_po) were helpful in the term extraction task. Typically, the extraction methods select term candidates based on some linguistic knowledge. After this process, they apply measures or combination of measures (and/or heuristics) to these candidates in order to generate a ranking. The higher the candidates are in the ranking, the better the chances of being terms. To decide up to which position must be considered in this ranking normally, a domain expert and/or terminologist manually or semiautomatically analyse the ranking. The first motivation of this thesis is to automate how to choose the candidates during the term extraction process. The second motivation of this research is to minimize the high number of candidates present in the term extraction. The high number of candidate, caused by the large amount of words in a corpus, could increase the time complexity and computational resources for extracting terms. The third motivation considered in this research is to improve the state of the art of the automatic simple term extraction for Brazilian Portuguese since the results of this extraction (F-measure = 16%) are still low when compared to other languages like English (F-measure = 92%) and Spanish (F-measure =68%). Given these motivations, we proposed the MATE-ML method (Automatic Term Extraction Based on Machine Learning), which aims to automatically extract simple terms using the machine learning techniques. MATE-ML method suggests the use of filters to reduce the high number of term candidates during the term extraction task without harming the domain representation. Thus, we believe the extractors may generate smaller candidate lists, requiring less time to evaluate these candidates. The MATE-ML method was instantiated in two approaches.: (i) ILATE (Inductive Learning for Automatic Term Extraction),. which uses the supervised inductive classification to label term candidates, and (ii) TLATE (Trnasductive Learning for Automatic Term Extraction), which uses transductive semi-supervised classification to propagate the classes from labeled candidates to unlabeled candidates. Using transductive learning in term extraction and using, at the same time, a rich set of candidate features belonging to different levels of knowledge (linguistic,statistical, and hybrid) are also considered as contributions. In this thesis, we discuss the advantages and limitations of these two proposed approaches. We emphasize taht the use of these approaches usually with higher precision (the best case is above of 81%), high coverage results (the best case is above of 87%), and good F-measure value (maximum of 41%) considering three corpora of different domains in the Brazilian Portuguese language
706

Classificação de fluxos de dados com mudança de conceito e latência de verificação / Data stream classification with concept drift and verification latency

Denis Moreira dos Reis 27 September 2016 (has links)
Apesar do grau relativamente alto de maturidade existente na área de pesquisa de aprendizado supervisionado em lote, na qual são utilizados dados originários de problemas estacionários, muitas aplicações reais lidam com fluxos de dados cujas distribuições de probabilidade se alteram com o tempo, ocasionando mudanças de conceito. Diversas pesquisas vêm sendo realizadas nos últimos anos com o objetivo de criar modelos precisos mesmo na presença de mudanças de conceito. A maioria delas, no entanto, assume que tão logo um evento seja classificado pelo algoritmo de aprendizado, seu rótulo verdadeiro se torna conhecido. Este trabalho explora as situações complementares, com revisão dos trabalhos mais importantes publicados e análise do impacto de atraso na disponibilidade dos rótulos verdadeiros ou sua não disponibilização. Ainda, propõe um novo algoritmo que reduz drasticamente a complexidade de aplicação do teste de hipótese não-paramétrico Kolmogorov-Smirnov, tornado eficiente seu uso em algoritmos que analisem fluxos de dados. A exemplo, mostramos sua potencial aplicação em um método de detecção de mudança de conceito não-supervisionado que, em conjunto com técnicas de Aprendizado Ativo e Aprendizado por Transferência, reduz a necessidade de rótulos verdadeiros para manter boa performance de um classificador ao longo do tempo, mesmo com a ocorrência de mudanças de conceito. / Despite the relatively maturity of batch-mode supervised learning research, in which the data typifies stationary problems, many real world applications deal with data streams whose statistical distribution changes over time, causing what is known as concept drift. A large body of research has been done in the last years, with the objective of creating new models that are accurate even in the presence of concept drifts. However, most of them assume that, once the classification algorithm labels an event, its actual label become readily available. This work explores the complementary situations, with a review of the most important published works and an analysis over the impact of delayed true labeling, including no true label availability at all. Furthermore, this work proposes a new algorithm that heavily reduces the complexity of applying Kolmogorov- Smirnov non-parametric hypotheis test, turning it into an uselful tool for analysis on data streams. As an instantiation of its usefulness, we present an unsupervised drift-detection method that, along with Active Learning and Transfer Learning approaches, decreases the number of true labels that are required to keep good classification performance over time, even in the presence of concept drifts.
707

Sobre o desempenho de algoritmos de aprendizado de mÃquinas na detecÃÃo de falhas em motores de induÃÃo trifÃsicos: um estudo comparativo / Performance Comparison of Machine Learning Algorithms for Three-phase Induction Motors Fault Detection

David Nascimento Coelho 29 September 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Esta dissertaÃÃo visa a detecÃÃo de falhas incipientes por curto-circuito entre espiras de um motor de induÃÃo trifÃsico do tipo gaiola de esquilo acionado por conversor de frequÃncia com modulaÃÃo por largura de pulso do tipo senoidal. Para detectar este tipo de falha, uma bancada de testes à utilizada para impor diferentes condiÃÃes de operaÃÃo ao motor, e cada amostra do conjunto de dados foi extraÃda das correntes de linha do conversor de frequÃncia supracitado. Para extraÃÃo de caracterÃsticas, a anÃlise da assinatura de corrente do motor foi utilizada. Para solucionar este problema, a detecÃÃo desta falha à tratada como um problema de classificaÃÃo, por isso, diferentes algoritmos supervisionados de aprendizado de mÃquina sÃo utilizados: MÃnimos Quadrados OrdinÃrios, Redes Perceptron Simples, Redes Perceptron Multicamadas, MÃquina de Aprendizado Extremo, MÃquina de Vetor de Suporte, MÃquina de Vetor de Suporte por MÃnimos Quadrados, MÃquina de Aprendizado MÃnimo, e Classificadores Gaussianos. Juntamente com a tÃcnica de opÃÃo de rejeiÃÃo, estes classificadores sÃo testados e os resultados destes sÃo comparados entre si e com outros trabalhos que fizeram uso mesmo banco de dados. Taxas de acerto mÃximo de 100% com os classificadores MÃquina de Vetor de Suporte e MÃquina de Vetor de Suporte por MÃnimos Quadrados sugerem que, em um futuro prÃximo, um sistema embarcado pode ser desenvolvido com estes algoritmos. / This dissertation aims at the detection of short-circuit incipient fault condition in a threephase squirrel-cage induction motor fed by a sinusoidal PWM inverter. In order to detect this fault, a test bench is used to impose different operation conditions to an induction motor, and each sample of the data set is taken from the line currents of the PWM inverter aforementioned. For feature extraction, the Motor Current Signature Analysis is used. The detection of this fault is treated as a classification problem, therefore different supervised algorithms of machine learning are used so as to solve it: Ordinary Least Squares, Singlelayer Perceptron, Multi-layer Perceptron, Extreme Learning Machine, Support-Vector Machine, Least-Squares Support-Vector Machine, the Minimal Learning Machine, and Gaussian Classifiers. Together with Reject Option technique, these classifiers are tested and the results are compared with other works that use the same data set. Maximum accuracy rates of 100% with Support-Vector Machine and Least-Squares Support-Vector Machine classifiers suggest that, in near future, an embedded system can be developed with these algorithms.
708

Modelo de Avaliação do Aprendizado de Metacompetências (MAAM) em cursos de Engenharias / Evaluation model of Meta-Competence Learning (EMMCL) in Engineering courses

Simone Aparecida Tiziotto 20 April 2018 (has links)
Imersos no contexto complexo e desafiador da Era do Conhecimento, voltando a atenção aos contextos de ensino-aprendizagem dos cursos de Engenharias, observamos a necessidade da proposição de modelos avaliativos formativos, contextualizados e que apoiem um processo de ensino-aprendizagem continuado, ativo, autônomo e sustentável. Este trabalho tem, portanto, como objetivo propor um modelo formativo de avaliação do aprendizado de metacompetências, aplicável aos cursos de Engenharias, em contextos que utilizem metodologias ativas de ensino-aprendizagem, entendendo aqui as metacompetências como um encontro sinérgico de competências que podem levar o indivíduo a alcançar e demonstrar resultados extraordinários. Para tanto, realizamos uma pesquisa bibliográfica e documental que resultou em uma primeira versão do modelo, seguida por uma pesquisa quantitativa do tipo survey com uma amostra de 330 participantes, na qual por meio da PCA (Análise dos Componentes Principais) e do Alpha de Cronbach otimizamos o modelo e aferimos níveis aceitáveis de confiabilidade e validade; ademais, ainda em busca de uma validação qualitativa, realizamos uma entrevista semiestruturada com docentes universitários com notório saber. Uma vez concluído, o modelo foi testado em um grupo amostral de 31 aprendizes que representa uma amostra estratificada do público-alvo para o qual o modelo foi proposto, o que confirmou sua aplicabilidade e adequação. Os resultados são formados por um modelo de avaliação de aprendizado aplicável aos cursos de Engenharias composto por 12 metacompetências e 44 competências a elas associadas, proposições de aplicações no âmbito de três categorias avaliativas e rubricado de acordo com o contexto em que for inserido. O MAAM apresenta-se como um modelo útil, relevante e capaz de contribuir para um aprendizado sustentável e adequado ao contexto contemporâneo. / Immersed in the complex and challenging context of the Age of Knowledge, turning our attention to the learning contexts of higher engineering courses, we observe the need to propose formative evaluative models, contextualized and that support a process of continuous, active, autonomous and sustainable learning. The aim of this work is therefore to propose and test a formative model for evaluating the learning of meta-competences, applicable to engineering courses, in contexts that use active learning methodologies. Understanding meta-competencies as a synergistic meeting of competencies that can lead the individual to achieve and demonstrate extraordinary results. To do so, we performed a bibliographical and documentary research that resulted in a first version of the model, followed by a quantitative research of the survey type with a sample population of 330 participants, in which through PCA and Cronbach\'s Alpha we optimized the model and the we measure acceptable levels of reliability and validity; In addition, still in search of a qualitative validation, we conducted a semistructured interview with university professors with well-known recognition. Once completed, the model was tested in a sample group of 31 students representing a sample of the target audience for which the model was proposed, confirming its applicability and appropriateness. The results are formed by a learning evaluation model applicable to higher engineering courses composed of 12 meta-competences and 44 competences associated to it, propositions of applications within three evaluative categories and initialed according to the context in which it is inserted. The MAAM presents itself as a useful, relevant model capable of contributing to a sustainable learning that is relevant to the contemporary context.
709

Com quantas línguas se faz um país? Concepções e práticas de ensino em uma sala de aula na educação bilíngue / With how many languages is a contry made? Conceptions and practices of instruction in a bilingual education classroom

Selma de Assis Moura 05 May 2009 (has links)
A pesquisa investiga as concepções e teorias subjacentes às práticas didáticas propostas por professores em uma classe de 1º ano do Ensino Fundamental em uma escola bilíngüe. O trabalho parte de uma desconstrução do mito de monolingüismo no Brasil, apontando para a pluralidade lingüística e cultural que constitui a sociedade brasileira apesar das políticas de planificação lingüística. Define os conceitos de bilingüismo, educação bilíngüe e escola bilíngüe apoiando-se nas definições multidimensionais propostas por Hamers, Blanc, Mackey, Valdés e Figueroa, que levam em conta não apenas a proficiência nas duas línguas, mas o uso das línguas em situações de comunicação, e o bilingüismo visto como um processo em construção ao invés de um produto acabado. Os contextos bilíngües presentes no Brasil são enumerados em escolas bilíngües indígenas, escolas LIBRAS-português para surdos, escolas de fronteiras nos países do MERCOSUL, escolas internacionais e escolas bilíngües de prestígio, apresentando alguns aspectos históricos e sociais relativos à presença de cada um desses contextos na sociedade, sobretudo a conscientização dos direitos de terceira geração, como os direitos lingüísticos. Adota uma metodologia de pesquisa etnográfica, analisando em nível micro-sociológico um contexto específico, uma sala de aula de 1º ano do Ensino Fundamental em uma escola bilíngüe de prestígio, levantando dados por meio de observações e entrevistas. Analisa as práticas didáticas propostas por professores encontradas no trabalho de campo e as teorias a elas subjacentes, identificando um programa de imersão baseado na teoria de aquisição natural das línguas proposta por Krashen (natural approach), que propõe uma aquisição inconsciente da língua, semelhante à língua materna, valorizando os aspectos afetivos, lúdicos e comunicativos da língua. Encontra uma ambigüidade nas práticas de alfabetização expressa por uma visão mais ampla de alfabetização em língua portuguesa do que na língua inglesa, e relaciona-a a aspectos culturais presentes na assimetria entre metodologia de ensino e na concepção de material didático em cada língua. Relaciona a realidade encontrada em sala de aula com aspectos macro-sociais em uma perspectiva de mútua influência entre escola e sociedade, observando que o aumento do interesse pelo ensino-aprendizagem de línguas hegemônicas pode tanto constituir uma forma de aprofundamento das desigualdades sociais quanto instrumentalizar os indivíduos para terem acesso a uma amplitude maior de conhecimentos historicamente construídos. / This research investigates the conceptions and theories underlying didactic practices proposed by teachers in a first year Elementary Education class at a bilingual school. This work stems from a deconstruction of the monolinguism myth in Brazil, pointing to the linguistic and cultural plurality which constitutes Brazilian society in spite of the policies on linguistic standardization. Defines the concepts of bilingualism, bilingual education and bilingual school, basing itself on the multidimensional definitions proposed by Hamers, Blanc, Mackey, Valdés and Figueroa, which take into consideration not only proficiency in the two languages, but the use of these languages in situations of communication, and bilingualism seen as a work-in-progress and not a finished product. The bilingual contexts present in Brazil are enumerated in indigenous bilingual schools, LIBRAS-Portuguese schools for the deaf, schools on the borders of MERCOSUL countries, international schools and bilingual schools of prestige, presenting some historical and social aspects relative to the presence of each of these contexts in society, above all the awareness of the rights of the third generation, such as linguistic rights. The research adopts an ethnographic research methodology, analyzing at a micro-sociological level a specific context a classroom of a first year Elementary School Education group at a prestigious bilingual school, gathering data through observations and interviews. Analyzes the didactic practices proposed by teachers found in the field of work and the underlying theories; identifying a program of immersion based on the theory of the natural acquisition of languages proposed by Krashen (natural approach), which considers an unconscious acquisition of language, similar to mother language, valuing the affective, playful and communicative aspects of the language. Finds an ambiguity in the practice of the literacy process expressed by a more ample view of literacy in the Portuguese language than in the English language that might be regarded to diverse cultural features present in the methodology of education and the conception of didactic material in each language. Relates the reality found in the classroom with macro-social aspects, in a perspective of mutual influence between the school and society, observing that the increase in interest for the learning of hegemonic languages can constitute a form of deepening social inequality, as well as provide individuals with tools to have access to a greater amplitude of knowledge historically constructed.
710

Compreendendo o aprendizado do consultor na relação consultor-cliente : a aprendizagem como processo de reflexão e construção

Lúcia Teixeira Hirschle, Ana January 2006 (has links)
Made available in DSpace on 2014-06-12T15:07:16Z (GMT). No. of bitstreams: 2 arquivo1376_1.pdf: 546286 bytes, checksum: 0dfdaf22fa948a73d8bd9d5645327b50 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Esta dissertação tem como objetivo estudar a relação consultor-cliente, entendida como uma relação de aprendizagem mútua, na qual ambos refletem e aprendem ainda que insuficientemente sendo a própria prática profissional dos consultores grande fonte de aprendizagem. Desta forma, pretende-se investigar como acontece tal aprendizagem, na perspectiva do consultor, e em que condições ela poderia acontecer mais e melhor, utilizando como base as teorias de aprendizagem pela experiência e reflexão e a aprendizagem construída socialmente, consideradas relevantes e mais compatíveis com o objeto do estudo. O conceito de aprendizagem aqui adotado tem como referência os pressupostos da abordagem construtivista que postula ser o processo de aprendizagem uma construção de significados a partir das experiências, ações e interações. A pesquisa de campo foi realizada através de entrevistas de acompanhamento com quatro consultores organizacionais, pertencentes a diferentes empresas de consultoria, que observaram suas próprias aprendizagens durante a realização de um serviço de consultoria, relatando-as posteriormente. Os resultados mostraram que a própria prática de consultoria revela-se fonte de aprendizagem riquíssima para o consultor na medida em que ele refletir sistematicamente sobre as experiências vivenciadas, as descobertas e aprendizados provenientes da sua atuação, compartilhando-os com seus pares, parceiros e comunidades de prática. Com isso, todos poderiam aprender muito mais, possibilitando uma ação também mais efetiva e consciente. O papel do consultor é crucial nesse processo, pois pode ser um facilitador da sua própria aprendizagem e também do cliente, nos diferentes contextos organizacionais

Page generated in 0.0654 seconds