• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • Tagged with
  • 21
  • 21
  • 16
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Wide area monitoring and control systems - application communication requirements and simulation

Chenine, Moustafa January 2009 (has links)
Today’s electrical transmission & distribution systems, are facing a number of challenges related to changing environmental, technical and business factors. Among these factors are, increased environmental restrictions leading to higher share of production from renewable and uncontrollable sources as well as local environmental concerns regarding construction of new transmission and distribution lines. The re-regulation of the electricity market has created a dynamic environment in which multiple organizations have to coordinate and cooperate in the operation and control of the power system. Finally, the high rate of devel-opment within the ICT field is creating many new opportunities for power system opera-tion and control, thanks to introduction of new technologies for measurement, communi-cation and automation. As a result of these factors, Wide Area Monitoring and Control (WAMC) systems have been proposed. WAMC systems utilize new ICT based technologies to offer more accurate and timely data on the state of the power system. WAMC systems utilize Phasor Measure-ment Units (PMUs) that have higher data rates and are time synchronised using, GPS satel-lites. This allows synchronized observation of the dynamics of the power system, making it possible to manage the system at a more efficient and responsive level and apply wide area control and protection schemes. The success WAMC systems, on the other hand, are largely dependent on the performance of the Information and Communication Technology (ICT) infrastructure that would support them. This thesis investigates the requirements on, and suitability of the ICT systems that support WAMC systems. This was done by identifying WAMC applications and the elicitation of their requirements. Furthermore, a set of simulation projects were carried out to determine the communication system characteristics such as delay and the impact of this delay on the WAMC system. This thesis has several contributions. First, it provides summary and analysis of WAMC application priorities and requirements in the Nordic region. Secondly it provides simula-tion based comparison and evaluation of communication paradigms for WAMC systems. The research documented in this thesis addresses these paradigms by providing a compari-son and evaluation through simulation. Thirdly, the thesis provides insight to the possible sources of delay in WAMC architecture and the impact of these delays on data quality specifically data incompleteness. This provides insight on what applications are important to practitioners and what is the expected performance of these applications, as seen from the power system control and operation point of view.
12

Standards-based sensor web for wide area monitoring of power systems

Dahal, Nischal 08 August 2009 (has links)
The balance of supply and demand of energy is the key factor in the stability of power systems. A small disturbance in the supply demand relationship, if not properly handled, can cascade into a major outage, costing millions of dollars to the stakeholders. Proper monitoring and exchange of critical information in real time is the only solution to prevent the instability in this vulnerable system. But, the disparity in the protocols used by power utilities and the lack of infrastructure for information exchange are proving to be hindrance to obtaining a reliable de-regularized power industry. In this thesis, an emerging Sensor Web Enablement (SWE) has been adapted for the wide area monitoring of power systems. SWE and CIM provide a solution to both problems; the heterogeneity of data and the lack of central repository of the data for proper action. The sensor data from utilities that are published in CIM were modeled thorough a SensorML and exposed via a Sensor Observation Service (SOS). This provides a standard method for discovering and accessing the sensor data between utilities and facilitates rapid response functionality to handle contingences.
13

Modal Analysis Techniques in Wide-Area Frequency Monitoring Systems

Baldwin, Mark W. 11 April 2008 (has links)
The advent of synchronized wide-area frequency measurements obtained from frequency disturbance recorders and phasor measurement units has presented the power industry with special opportunities to study power system dynamics. I propose the use of wide-area frequency measurements in identifying system disturbances based on power system post-event modal properties. In this work, power system dynamics are examined from an internal system energy viewpoint. Since an electric power system is composed of coupled rotating machines (large generators) which have air gap magnetic fields that are essentially static, or quasi-static, the power system may be modeled as a system with energy stored in quasi-static magnetic fields. The magnetic fields in the machines do change with time but may be modeled as static as far as wave propagation is concerned. The dynamic model that I develop treats this magnetic energy specifically as potential energy. Each rotating machine also contains an inertia due to the mass and motion of its rotor train and so each machine contains a rotational kinetic energy. Thus the internal system energy for a power system dynamic model may be considered to be contained in potential (magnetic) and kinetic (rotating mass) energies. This notion of internal energy lends itself to the use of a state-space model where each system state is associated with either a kinetic energy or a potential energy. An n-machine system would have a total of 2n states and would thus be a 2n-th order system. For many power system disturbances, I postulate that a linearized version of this model may be used to examine system natural response in terms of frequency and phasor measurements. The disturbances that I will investigate include generator and line outages. For any particular outage, the power system exhibits a very specific natural response in terms of its kinetic and potential energies. Kinetic energy in the system is directly related to each specific machine's rotational speed. I propose that the kinetic energy corresponds directly with bus frequencies through a linear transformation. Likewise magnetic field energy in each machine corresponds directly with a torque angle. The potential energy in the system thus corresponds directly with bus angles through a linear transformation. The primary focus of this work is on frequency deviation modal characteristics – specifically damped oscillation frequencies, mode shapes, and damping ratios. This work presents how specific disturbances on a power system will lead to specific oscillation frequencies in the deviation quantities and that these oscillation frequencies may be used to identify the disturbance. The idea of disturbance identification stems out of previous work done in locating disturbances by using a distributed parameter (DP) model of an electric power system. This DP model, which assumes a wave-like motion of frequency and phase quantities, was used to locate disturbances via a triangulation method. This present work, instead of using a DP model of the power system, assumes lumped parameters and focuses on disturbance identification strictly via modal characteristics – particularly oscillation frequency in the frequency deviations. This model is not concerned with geographic location but focuses on system topology, loading, and machine mass as lumped parameters. Advantages of disturbance identification include mainly reliability enhancements but can also be used in marketing applications. The state-space model used to realize this theory is verified via simulation using small, "academic" systems which should prove useful in classroom settings. Additionally the model is verified on a larger test system in order prove its validity and potential usefulness on large power systems. / Ph. D.
14

Power Systems Analysis in the Power-Angle Domain

Arana, Andrew Jex 23 December 2009 (has links)
The idea of performing power systems dynamic analysis in the power-angle domain has been hinted at by previous researchers, but this may be the first published document to develop detailed techniques by which entire power systems can be represented and solved in the power-angle domain. With the widespread deployment of phasor measurement units and frequency data recorders the industry is looking for more real-time analytical tools to turn real-time wide-area measurements into useful information. Applications based on power-angle domain analysis are simple enough that they may be used online. Power-angle domain analysis is similar to DC load-flow techniques in that a flat voltage profile is used and it is assumed that real power and voltage angle are completely decoupled from reactive power and voltage magnitude. The linearized equations for the dynamics of generators and loads are included in the model, which allows the electromechanical response to be solved using conventional circuit analysis techniques. The effect of generation trips, load switching, and line switching can be quickly approximated with nodal analysis or mesh analysis in the power-angle domain. The analysis techniques developed here are not intended to be as accurate as time-domain simulation, but they are simpler and fast enough to be put online, and they also provide a better analytical insight into the system. Power-angle domain analysis enables applications that are not readily available with conventional techniques, such as the estimation of electromechanical propagation delays based on system parameters, the formulation of electromechanical equivalents, modal analysis, stability analysis, and event location and identification based on a small number of angle or frequency measurements. Fault studies and contingency analysis are typically performed with detailed time-domain simulations, where the electromechanical response of the system is a function of every machine in the interconnection and the lines connecting them. All of this information is rarely known for the entire system for each operating condition; as a result, for many applications it may be more suitable to compute an approximation of the system response based on the current operating state of only the major lines and generators. Power-angle domain analysis is adept at performing such approximations. / Ph. D.
15

Assessing Excessive Noise Exposure of Music-Oriented Nightclub Employees

Fitzgerald, Aiyanna 25 June 2016 (has links)
Much research has gone into noise-induced hearing loss (NIHL) and the effects of high intensity noise levels on the hearing mechanism of individuals. A study by the National Institutes of Health has established that high intensity sounds can cause hearing damage of either a temporary, or worse, a permanent nature; regardless of the age of the person. While sound levels below 75 decibels are considered comparatively harmless and have been found not to cause any kind of permanent hearing loss; sound levels greater than 85 decibels and regular exposure of approximately 8 hours per day, on an average, has been found to cause permanent loss of hearing (Bulla, 2003). The purpose of this research study was to assess excessive noise exposure of music-oriented nightclub employees, with music playing. Two employees were used as candidates for the purpose of this study, which was conducted on three days during a work week. Data on personal noise exposure was collected using personal noise dosimeters on a server and a promoter. For purposes of the study, a sound level meter was used to collect the noise levels in the working area, and prepare a sound map. The study was conducted in a nightclub in Tampa, Florida, with music playing. Data was collected on Wednesday, Friday, and Saturday. In total, the data was collected over six sampling nights. The data on noise levels was collected for both personal noise data levels and area noise levels during the period of study. In addition to the personal dosimeters, a sound level meter was also used for data collection. The results of this study indicate that noise levels were highest on nights with live entertainment. The days with performance of live entertainment were random and followed no particular order. The highest TWA noise exposure of 97.3 dB, for the server, occurred on Saturday, when a live entertainer performed in the establishment. The highest TWA noise exposure of 94.3 dB, for the promoter, occurred on Wednesday. Using the OSHA PEL and OSHA Hearing Conversation measurement methods, the server was exposed to excessive noise levels, greater than 85 dBA, on every night of the study (6 nights), while the promoter had three exposures that were greater than 90 dBA, using the OSHA PEL method, and exposures greater than 85 dBA on every night of the study, using the OSHA Hearing Conservation method. However, using the ACGIH measurement method, both the Server and the Promoter were exposed to excessive noise levels every night of the study (six nights).
16

Analysis of transmission system events and behavior using customer-level voltage synchrophasor data

Allen, Alicia Jen 31 October 2013 (has links)
The research topics presented in this dissertation focus on validation of customer-level voltage synchrophasor data for transmission system analysis, detection and categorization of power system events as measured by phasor measurement units (PMUs), and identification of the influence of power system conditions (wind power, daily and seasonal load variation) on low-frequency oscillations. Synchrophasor data can provide information across entire power systems but obtaining the data, handling the large dataset and developing tools to extract useful information from it is a challenge. To overcome the challenge of obtaining data, an independent synchrophasor network was created by taking synchrophasor measurements at customer-level voltage. The first objective is to determine if synchrophasor data taken at customer-level voltage is an accurate representation of power system behavior. The validation process was started by installing a transmission level (69 kV) PMU. The customer-level voltage measurements were validated by comparison of long term trends and low-frequency oscillations estimates. The techniques best suited for synchrophasor data analysis were identified after a detailed study and comparison. The same techniques were also applied to detect power system events resulting in the creation of novel categories for numerous events based on shared characteristics. The numerical characteristics for each category and the ranges of each numerical characteristic for each event category are identified. The final objective is to identify trends in power system behavior related to wind power and daily and seasonal variations by utilizing signal processing and statistical techniques. / text
17

Synchrophasor Applications and their Vulnerability to Time Synchronization Impairment

Almas, Muhammad Shoaib January 2017 (has links)
Recent years have seen the significance of utilizing time-synchronized, high resolution measurements from phasor measurement units (PMUs) to develop and implement wide-area monitoring, protection and control (WAMPAC) systems. WAMPAC systems aim to provide holistic view of the power system and enable detection and control of certain power system phenomena to enhance reliability and integrity of the grid. This thesis focuses on the design, development and experimental validation of WAMPAC applications, and investigates their vulnerability to time synchronization impairment. To this purpose, a state-of-the-art real-time hardware-in-the-loop (RT-HIL) test-bench was established for prototyping of synchrophasor-based applications. This platform was extensively used throughout the thesis for end-to-end testing of the proposed WAMPAC applications. To facilitate the development of WAMPAC applications, an open-source real-time data mediator is presented that parses the incoming synchrophasor stream and provides access to raw data in LabVIEW environment. Within the domain of wide-area protection applications, the thesis proposes hybrid synchrophasor and IEC 61850-8-1 GOOSE-based islanding detection and automatic synchronization schemes. These applications utilize synchrophasor measurements to assess the state of the power system and initiate protection / corrective action using GOOSE messages. The associated communication latencies incurred due to the utilization of synchrophasors and GOOSE messages are also determined. It is shown that such applications can have a seamless and cost-effective deployment in the field.   Within the context of wide-area control applications, this thesis explores the possibility of utilizing synchrophasor-based damping signals in a commercial excitation control system (ECS). For this purpose, a hardware prototype of wide-area damping controller (WADC) is presented together with its interface with ECS. The WADC allows real-time monitoring and remote parameter tuning that could potentially facilitate system operators’ to exploit existing damping assets (e.g. conventional generators) when changes in operating conditions or network topology emerges. Finally the thesis experimentally investigates the impact of time synchronization impairment on WAMPAC applications by designing RT-HIL experiments for time synchronization signal loss and time synchronization spoofing. It is experimentally demonstrated that GPS-based time synchronization impairment results in corrupt phase angle computations by PMUs, and the impact this has on associated WAMPAC application. / <p>QC 20171121</p> / smart transmission grid operation and control (STRONg2rid)
18

Development and Verification of Control and Protection Strategies in Hybrid AC/DC Power Systems for Smart Grid Applications

Salehi Pour Mehr, Vahid 02 November 2012 (has links)
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
19

Intelligent Techniques for Monitoring of Integrated Power Systems

Agrawal, Rimjhim January 2013 (has links) (PDF)
Continued increase in system load leading to a reduction in operating margins, as well as the tendency to move towards a deregulated grid with renewable energy sources has increased the vulnerability of the grid to blackouts. Advanced intelligent techniques are therefore required to design new monitoring schemes that enable smart grid operation in a secure and robust manner. As the grid is highly interconnected, monitoring of transmission and distribution systems is increasingly relying on digital communication. Conventional security assessment techniques are slow, hampering real-time decision making. Hence, there is a need to develop fast and accurate security monitoring techniques. Intelligent techniques that are capable of processing large amounts of captured data are finding increasing scope as essential enablers for the smart grid. The research work presented in this thesis has evolved from the need for enhanced monitoring in transmission and distribution grids. The potential of intelligent techniques for enhanced system monitoring has been demonstrated for disturbed scenarios in an integrated power system. In transmission grids, one of the challenging problems is network partitioning, also known as network area-decomposition. In this thesis, an approach based on relative electrical distance (RED) has been devised to construct zonal dynamic equivalents such that the dynamic characteristics of the original system are retained in the equivalent system within the desired accuracy. Identification of coherent generators is another key aspect in power system dynamics. In this thesis, a support vector clustering-based coherency identification technique is proposed for large interconnected multi-machine power systems. The clustering technique is based on coherency measure which is formulated using the generator rotor measurements. These rotor measurements can be obtained with the help of Phasor Measurement Units (PMUs). In distribution grids, accurate and fast fault identification of faults is a key challenge. Hence, an automated fault diagnosis technique based on multi class support vector machines (SVMs) has been developed in this thesis. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted line section and the fault impedance in the distributed generation (DG) systems. The proposed approach is based on the three phase voltage and current measurements available at all the sources i.e. substation and at the connection points of DGs. An approach for voltage instability monitoring in 3-phase distribution systems has also been proposed in this thesis. The conventional single phase L-index measure has been extended to a 3-phase system to incorporate information pertaining to unbalance in the distribution system. All the approaches proposed in this thesis have been validated using standard IEEE test systems and also on practical Indian systems.
20

A Networked Control Systems Framework for Smart Grids with Integrated Communication

Sivaranjani, S January 2014 (has links) (PDF)
Over the last decade, power systems have evolved dramatically around the world, owing to higher demand, stringent requirements on quality and environmental concerns that are becoming increasingly critical. With the introduction of new technologies like large-scale renewable energy, wide-area measurement based on phasor measurement units (PMUs) and consumer interaction in the distribution system, the power grid today has become more potent than ever before. Most of the defining features of the smart grid today rest on the integration of advanced communication capabilities into the grid. While communication infrastructure has become a key enabler for the smart grid, it also introduces new and complex control challenges that must be addressed. As we increasingly rely on information transmitted to distant areas over communication networks, it becomes imperative to model the effects of the communication system on the stability of the power grid. Several approaches exist in control theory to study such systems, widely referred to as Networked Control Systems (NCS). Networked control theory provides mathematical tools for system stability analysis and control in the presence of communication delays, packet dropouts and disordering due to transmission of sensor and actuator signals via a limited communication network. In this thesis, a networked control framework for smart grids with integrated commu-nication infrastructure (ICT) is developed. In particular, a networked control systems perspective is developed for two scenarios - wide-area monitoring control, and coordinated control of distributed generation sources. The effects of communication delays and packet dropouts on power system stability are modeled in detail. In the wide-area monitoring control problem, system state measurements are trans-mitted from remote locations through a communication network. The system is modeled as an NCS and a control design approach is presented to damp inter-area oscillations arising from various power system disturbances in the presence of communication constraints. In the coordinated control scenario, a power system with geographically dispersed sources is modeled as an NCS. A networked controller is designed to stabilize the system in the presence of small signal disturbances when system measurements are subject to communication delays and packet dropouts. A realistic output feedback networked control scheme that only uses voltage measurements from PMUs is also developed for practical implementation. The networked controllers designed in this thesis are validated against controllers designed by standard methods, by simulation on standard test systems. The networked controllers are found to enhance power system stability and load transfer capability even in the presence of severe packet dropouts and delays. Several extensions and theoretical problems motivated by this thesis are also proposed.

Page generated in 0.0825 seconds