• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 52
  • 10
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 27
  • 26
  • 25
  • 22
  • 21
  • 20
  • 19
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Polimerazės grandininės reakcijos metodo taikymas farmakogenetiniuose tyrimuose / Use of polymerase chain reaction in pharmacogenetics

Tatarūnas, Vacis 03 August 2007 (has links)
Kiekvieno vaisto sukeltas tiek farmakologinis (veiksmingumo), tiek toksikologinis poveikis kiekvienam pacientui yra skirtingas, todėl gana dažnai vaistų skyrimas ir vartojimas tampa labai komplikuotas. Prancūzijoje 3.2% hospitalizacijos atvejų yra sąlygoti vaistų. Tai sudaro 320 milijonų eurų sumą per metus. Genetiniai faktoriai, sąlygojantys vaistų farmakokinetiką ir farmakodinamiką, dalinai paaiškina skirtingą vaistų poveikį žmogui. Tyrimo tikslas: 1. Patikrinti galimybę gausinti serume ir plazmoje esančią DNR nauju būdu ir atlikti genetinius tyrimus. 2. Patvirtinti realaus laiko polimerazės grandininės reakcijos (PGR) metodiką aromatazės genui, panaudojus ląsteles, kurių šio geno raiška yra pakankama. Rezultatai: Patikrinta galimybė gausinti serume ir plazmoje esančią DNR, sekvenavus gautą DNR ir sekas palyginus su esančiomis duomenų bazėje : rezultatai teigiami. Nustatyta, kad, ekstrahuojant druskiniu metodu, gaunama daugiau DNR, bet ji blogesnės kokybės, nei naudojant QIAGEN kolonėles. Patvirtinta realaus laiko PGR metodika aromatazės genui, naudojant krūties vėžio ląsteles. / There is much variability in the manner individuals respond to drugs, such that the management of some drugs is problematic. In France, the incidence of hospital admissions related to adverse drug reactions is estimated to be 3.2 %, at an annual cost of over 300 millions euros. Genetic factors affecting the pharmacokinetics and pharmacodynamics of drugs partly explain interindividual variability in drug response. Aim of experiment: 1. verify, if it is possible to amplify serum and plasma DNA using new method, and make a genetic research. 2. verify real time polymerase chain reaction to aromatase gene. Find cell line, whish have a sufficient expression of this gene. Results : We verified the possibility to amplify serum and plasma DNA using new method. We made the sequencing of DNA extracts and we compared results in data base : results are positives. It`s important, that QIAGEN extracts are cleanner than salt extracts, but there are few of DNA. We confirmed real time PCR method to aromatase gene, using breast cancer cells.
102

Hormonal Regulation of Vaginal Mucosa

Kunovac Kallak, Theodora January 2015 (has links)
Vaginal atrophy symptoms such as dryness, irritation, and itching, are common after menopause. Vaginal estrogen therapy is the most effective treatment but not appropriate for all women. Women with estrogen-responsive breast cancer treated with aromatase inhibitor (AI) treatment, suppressing estrogen levels, often suffer from more pronounced vaginal atrophy symptoms. However, vaginal estrogen treatment is not recommended, leaving them without effective treatment options. The aim of this thesis was to study the effect of long-term anti-estrogen therapy on circulating estrogen levels and biochemical factors in vaginal mucosa in relation to morphological changes and clinical signs of vaginal atrophy. Circulating estrogen levels were analyzed by use of mass spectrometry and radioimmunoassay. Immunohistochemistry was used to study vaginal proliferation and steroid hormone receptors in vaginal mucosa. Vaginal gene expression was studied by use of microarray technology and bioinformatic tools, and validated by use of quantitative real-time PCR and immunohistochemistry. An estrogenic regulation of aquaporins and a possible role in vaginal dryness was investigated in vaginal mucosa and in Vk2E6E7 cells. Aromatase inhibitor-treated women had higher than expected estradiol and estrone levels but still significantly lower than other postmenopausal women. Aromatase was detected in vaginal tissue, the slightly stronger staining in vaginal mucosa from AI-treated women, suggest a local inhibition of vaginal aromatase in addition to the systemic suppression. Vaginal mucosa from AI-treated women had weak progesterone receptor, and strong androgen receptor staining intensity. Low estrogen levels lead to low expression of genes involved in cell adhesion, proliferation, and differentiation as well as weak aquaporin 3 protein immunostaining. The higher than expected estrogen levels in AI-treated women suggest that estrogen levels might previously have been underestimated. Systemic estrogen suppression by treatment with AIs, and possibly also by local inhibition of vaginal aromatase, results in reduced cell adhesion, proliferation, differentiation, and weak aquaporin 3 protein staining. Low proliferation and poor differentiation leads to fewer and less differentiated superficial cells affecting epithelial function and possibly also causing vaginal symptoms. Aquaporin 3 with a possible role in vaginal dryness, cell proliferation, and differentiation should be further explored for the development of non-hormonal treatment options for vaginal symptoms.
103

Azoles and Contaminants in Treated Effluents Interact with CYP1 and CYP19 in Fish :

Beijer, Kristina January 2015 (has links)
Numerous contaminants are present in mixtures in the aquatic environment. Among these are the azoles, a group of chemicals that includes both pharmaceuticals and pesticides. Azole fungicides are designed to inhibit lanosterol 14-demethylase (cytochrome P450 (CYP) 51), while other azoles are intended to inhibit aromatase (CYP19), i.e. the enzyme catalyzing biosynthesis of estrogens. In fish, a variety of CYP enzymes are involved in biotransformation of waterborne contaminants, and in metabolism of endogenous compounds including steroidal hormones. The induction of CYP1A protein and 7-ethoxyresorufin O-deethylase (EROD) activity are common biomarkers for exposure to aryl hydrocarbon receptor (AhR) agonists in fish. We developed an assay to measure inhibition of CYP1A activity (EROD) in three-spined stickleback and rainbow trout gill tissue ex vivo. Several azole fungicides were found to be potent inhibitors of CYP1A activity. A wastewater effluent containing high concentrations of pharmaceuticals was also shown to inhibit CYP1A activity. Further, several azoles inhibited CYP19 activity in rainbow trout brain microsomes in vitro. Azole mixtures reduced both CYP1A and CYP19 activity monotonically and in an additive way. Given the additive action of the azoles, studies to determine adverse effects of azole mixtures on CYP-regulated physiological functions in fish are needed. Induction of EROD and of gene expression of CYP1 in several organs was observed in an in vivo exposure with the same effluent shown to inhibit EROD. This finding could imply that there was a mixture of AhR agonists and CYP1A inhibitors in the effluent. Finally, wastewater treatment technologies were evaluated using biomarker responses in rainbow trout exposed to effluents of different treatments. The results from chemical analysis together with the biomarker results show that ozone and granulated active carbon treatment removed most pharmaceuticals, as well as AhR agonists and other chemicals present in the regular effluent. This part of the thesis demonstrates that biomarkers in fish such as induction of CYP1 gene expression are applicable to evaluate the efficiency of different treatment technologies for wastewater.
104

Risk of Stroke in Older Women Treated for Early Invasive Breast Cancer, Tamoxifen vs. Aromatase Inhibitors: A Population based Retrospective Cohort Study

Wijeratne, Don Thiwanka Dilshan 30 December 2010 (has links)
Tamoxifen and aromatase inhibitors are treatment options for women with breast cancer and evidence on the risk of stroke is important in choosing between these two options. A systematic review of two randomized controlled trials and their nine related trial reports showed different methods for adverse event reporting and inconsistent estimates of stroke risk. In an observational cohort study of 5443 Ontario women, aged 66 years or older with early stage breast cancer, 86 ischemic stroke events (1.6%) occurred during follow-up of 5 years. There was no statistically significant difference in the risk of stroke between the hormone therapy groups [adjusted HR for tamoxifen compared to AI 1.330 (0.810, 2.179)]. Results were similar across cardiovascular disease risk groups and were robust to different follow up periods and analytic methods. This study suggests that there is no significant difference in stroke between these treatment options.
105

Rapid social regulation of 3β-HSD activity in the songbird brain

Pradhan, Devaleena S. 11 1900 (has links)
Rapid increases in plasma androgens are generally associated with short-term aggressive challenges in many breeding vertebrates. However, some animals such as song sparrows (Melospiza melodia) are aggressive year-round, even during the non-breeding season, when gonads are regressed and systemic testosterone (T) levels are non-detectable. In contrast, levels of the prohormone dehydroepiandrosterone (DHEA) are elevated year-round in the plasma and brain. The local conversion of brain DHEA to potent androgens may be critical in regulating non-breeding aggression. 3β-hydroxysteroid dehydrogenase/Δ4-Δ5 isomerase (3β-HSD) catalyzes DHEA conversion to androstenedione (AE) and the cofactor NAD⁺ assists in this transformation. In this thesis, I asked whether brain 3β-HSD activity is regulated by social encounters in seasonally breeding male songbirds. In Experiment 1, I looked at the long-term seasonal regulation of brain 3β-HSD activity. 3β-HSD activity was highest in the non-breeding season compared to the breeding season and molt. In Experiment 2, I hypothesized that brain 3β-HSD activity is rapidly regulated by short-term social encounters during the non-breeding season. A 30 min social challenge increased aggressive behavior. Without exogenous NAD⁺, there was ~355% increase in 3β-HSD activity in the caudal telencephalon and ~615% increase in the medial central telencephalon compared to controls (p<0.05). With exogenous NAD⁺, there was no effect of social challenge on 3β-HSD activity. These data suggest that endogenous cofactors play a critical role in the neuroendocrine response to social challenges. The increase in brain DHEA conversion to AE during social challenges may be a mechanism to rapidly increase local androgens in the non-breeding season, when there are many costs of systemic T.
106

Steroid regulation of seasonal territorial aggression in the male song sparrow, Melospiza melodia morphna /

Wacker, Douglas W. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 91-106).
107

The molecular biology of temperature-dependent sex determination in reptiles

Dodd, Keela L. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Additional advisors: Asim Bej, Gene Hines, Douglas Watson, Douglas Weigent. Description based on contents viewed Oct. 2, 2008; title from PDF t.p. Includes bibliographical references.
108

Glutamatergic Regulation of Adult Goldfish Radial Glial Cells Via Group III Metabotropic Glutamate Receptors

Sacchi, Federico 05 December 2018 (has links)
Aromatase is an enzyme that converts androgens to estrogens. In teleosts, brain aromatase, also known as aromatase B (cy19a1b), is only expressed in radial glial cells (RGCs). This is in contrast to aromatase A, which is expressed in gonads. Estrogens such as estradiol (E2) modulate neurogenesis in the adult teleost brain. Recent studies show that E2 also differentially regulates aromatase B expression in goldfish RGCs. As a result, teleost RGCs are suggested to be involved in regulating neurogenesis. In addition, aromatase B expression in goldfish RGC is under the control of dopamine suggesting that neurons and neurotransmitters can regulate RGC function. Interestingly, goldfish RGC transcriptome data shows the expression of one group of metabotropic glutamate receptors (mGluRs), group III mGluRs, which suggests that glutamate may affect RGC function. In this thesis, I present my findings regarding potential glutamatergic regulation of RGCs. Firstly, I investigated the distribution of glutamatergic synaptic vesicles and RGCs in the female goldfish forebrain. Double-staining immunohistochemistry shows that vesicular glutamate transporter (vGLUT) 1/2-labelled glutamatergic synaptic vesicles are in close anatomical proximity to aromatase B-labelled RGCs, which suggests potential regulation of RGCs by glutamate. Glutamatergic regulation of cyp19a1b, cyclin D1 (ccnd1), cyclin A2 (ccna2), mGluR6b (grm6b), mGluR7 (grm7), and mGluR8b (grm8b) expression in cultured adult female goldfish RGCs was also examined. Results from pharmacological manipulations and qPCR data analysis show that selective activation of group III mGluRs decreased cyp19a1b, ccnd1, and ccna2 mRNA via inhibition of cAMP/PKA signalling. Furthermore, grm7 mRNA is positively regulated by cAMP-dependent signalling. The glutamate analog L-glutamic acid decreased cyp19a1b mRNA and increased ccnd1 and grm6b mRNA in a dose-dependent manner. This suggests that ccnd1 and grm6b expression may be regulated by glutamate receptors other than group III mGluRs, for example, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which are expressed in cultured goldfish RGCs. It was found that E2 upregulated cyp19a1b, ccnd1 and grm7 mRNA. However, selective activation of group III mGluRs decreases the stimulatory effect of E2 on ccnd1 expression. My findings show that glutamate finely regulates RGC neurogenic and steroidogenic genes, which may implicate glutamate in the regulation of RGC differentiation, RGC proliferation, and neurogenesis in surrounding cells.
109

Tumour evolution over time : treatment and progression : exploring the molecular heterogeneity of oestrogen receptor positive breast cancer

Arthur, Laura Margaret January 2017 (has links)
Introduction Recent advances in microarray technology have allowed more understanding of the complex molecular biology of breast cancer. The traditional prognostic information afforded by hormone receptor status and pathology variables is being supplemented and superseded by gene signatures predictive of risk of recurrence and response to treatments. Approximately 75% of breast cancers are oestrogen receptor positive (ER+) and can be treated by drugs that block oestrogen production such as letrozole. However not all ER+ tumours respond and even those that initially respond can develop resistance. Treating patients with neoadjuvant letrozole affords a unique opportunity to sample the same tumour in vivo at different time points reducing any potential inter-patient and inter-tumour variability. The molecular effects of drugs can be assessed long before clinical outcome is apparent. Underlying genetic differences or characteristics of the patient, tumour or sample may affect the molecular response to treatment. This project set out to use sequential patient-matched samples to evaluate molecular changes in breast tumours in the presence or absence of endocrine treatment in different subtypes, defined by histology or mutation status and to assess molecular variation between primary tumour and nodal metastasis. Methods RNA was extracted and processed to generate whole transcriptome Illumina Beadarray gene expression data from four unique cohorts of patients. Clinical data on treatments, recurrence and survival was collected from medical records. The first cohort compared 25 breast cancer patients with matched samples at diagnosis and at surgery, 14-35 (median 23) days later, with no intervening treatment; with 36 patients treated with neoadjuvant letrozole. A PCR assay to detect 8 known PIK3CA mutations and assessment of PTEN status was performed at both the primary and secondary event in a second cohort of 120 patients with endocrine treated disease who relapsed with either recurrence, lymph node metastases, a new second primary or progression of disease on primary endocrine therapy. The third cohort compared the molecular response to neoadjuvant letrozole in 14 patients with invasive lobular cancer (ILC) and 14 patients with invasive ductal cancer (IDC). A fourth cohort of women with node positive disease at diagnosis were assessed for variations in gene expression profiles between primary tumour and synchronous metastatic axillary lymph nodes (68 samples from 31 patients). Results The genomic profile of the no intervening treatment cohort did not differ significantly. Some changes in inflammatory genes were evident. This reassures us that changes seen during treatment are truly due to drug effect. This validates the use of a second biopsy to explore prediction of response. PIK3CA mutation status is maintained in the majority of patients with endocrine resistant disease and changed in only 15.7%. Where there was a change in PIK3CA this was significantly more likely to be a second primary breast cancer rather than a recurrence or progression of the primary cancer. PTEN status was also maintained in most patients. This does not support the theory that acquisition of a PIK3CA mutation is responsible for developing endocrine resistance. Novel PI3K inhibitor drugs may still be suitable in endocrine-resistant disease if activation of the pathway develops by other mechanisms. Consistent with previous studies, significant molecular differences were observed between ILC and IDC pre-treatment. Over half of these molecular differences were maintained after 3 months of letrozole. However, changes over time in individual tumours in response to letrozole were highly consistent in both ILC and IDC. When comparing primary with synchronous metastatic nodes only 39% of tumours clustered together with their matched primary or node. The molecular subtype of the node was often a poorer prognosis than the primary. There were also differences in subtype between nodes in a small cohort of patients with 2 involved nodes. Conclusions We have demonstrated that neoadjuvant window studies are a valid model for assessment of drug effects and evaluated differences in histology and mutation status. Endocrine resistance in breast cancer is rarely related to acquisition of PIK3CA mutations. Synchronous lymph node metastases can differ greatly from their matched primary. These findings are highly relevant when considering prescribing (neo)/adjuvant therapy and have significantly improved our understanding of breast cancer as we strive towards personalised medicine.
110

Potencial inibitório in vitro de biflavonoides de Garcinia gardneriana : um estudo sobre monoamina oxidades e CYP19 (aromatase)

Recalde Gil, Maria Angélica January 2015 (has links)
The plant Garcinia gardneriana (Planch. & Triana) Zappi, popularly known in Brazil as "bacupari" has traditionally been used for various types of inflammatory diseases and the evaluation of their chemical composition, mainly of leaves, has resulted in biflavonoids as major compounds. These phenolic compounds have shown anti-inflammatory activity validating the popular use of the plant. In this work was isolated from dried branches of Garcinia gardneriana the biflavonoids: morelloflavone, that is an naringenin covalently linked to luteolin, Gb-2a which is an naringenin linked to eriodictyol and Gb-2a- 7-O-glucose. These compounds have been previously evaluated in various activities such as anti-inflammatory and anti-antioxidants but there is no report of its activity as enzymatic inhibitors. However, the monomers that form it, have been evaluated in the inhibition of aromatase and antidepressant activity with positive outcome, which commonly are used MAO-A inhibitors. In the isolation process were also founded terpenoid compounds as lupeol and friedelin The isolated and purified biflavonoids were used to evaluate enzyme inhibition "in vitro" in monoamine oxidases (MAO-A MAO-B) and aromatase. The compounds showed a positive response even of IC50 5,47 μM and 1,35 μM for MAO-A inhibition of and aromatase enzyme respectively; discovering a way for a new proposal to link both enzymes for treatment of hormone-dependent cancers and anxiety and depression disorders. / La planta Garcinia gardneriana (Planch. & Triana) Zappi, popularmente conocida en Brasil como "bacupari" ha sido tradicionalmente usada para varios tipos de enfermedades inflamatorias y la evaluación de su composición química, principalmente de las hojas, ha resultado en biflavonoides como compuestos mayoritarios. Estos compuestos fenólicos han demostrado actividad anti-inflamatória validando el uso popular de la planta. En este trabajo se asilaron a partir de tallos secos de la Garcinia gardneriana los biflavonoides: moreloflavona, que consiste en una naringenina unida covalentemente a luteolina, Gb-2a que es un compuesto que consiste en una naringenina unida a un eriodictyol y Gb-2a-7-O-glucose. Estos compuestos ya han sido previamente evaluados en diversas actividades como anti inflamatorios y anti antioxidantes pero no se tiene reporte de su actividad como inhibidores enzimáticos. Sin embargo, los monomeros que los conforman han sido evaluados en la inhibición de la aromatasa y con resultados positivos como en la actividad antidepresiva, para la cual comúnmente son usados los inibidores de MAO-A. En el proceso de aislamiento también fueron encontrados compuestos terpenoides como lupeol y friedelina. Los biflavonoides aislados y purificados se usaron para evaluar la inhibición enzimática “in vitro” en monoaminooxidasas (MAO-A, MAO-B) y aromatasa. Los compuestos presentaron una respuesta positiva calculada con IC50 de hasta 5,47 μM y 1,35 μM para la inhibición de las enzimas MAO-A y aromatasa respectivamente, abriendo el camino a una nueva propuesta de relacionar estas dos enzimas para tratamiento de cánceres hormonodependientes y transtornos de ansiedad y depresión.

Page generated in 0.0636 seconds