• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 41
  • 15
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 343
  • 308
  • 172
  • 67
  • 55
  • 52
  • 35
  • 30
  • 30
  • 29
  • 25
  • 24
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

SIMULATION STUDY OF InP-BASED UNI-TRAVELING CARRIER PHOTODIODE

SRIVASTAVA, SHIVANI January 2003 (has links)
No description available.
122

Simulation and Design of InAs Nanowire Transistors Using Ballistic Transport

Myers Riggs, Rhonda Renee January 2005 (has links)
No description available.
123

Picosecond optical studies of semiconductor dynamics /

McLean, Daniel Garth January 1984 (has links)
No description available.
124

Detection of Gallium Arsenide Semiconductor Laser Pulses with Avalanche Detectors

Marshall, Albert Henry 01 January 1973 (has links) (PDF)
No description available.
125

Generation of squeezed light in semiconductors

Schucan, Gian-Mattia January 1999 (has links)
We present experimental studies based on all three methods by which the generation of squeezed light in semiconductors has thus far been demonstrated experimentally: Fourwave mixing, multi-photon absorption and direct generation at the source. Four-wave mixing was used to generate femtosecond-pulsed quadrature squeezed light by cross-phase modulation in single-crystal hexagonal CdSe at wavelengths between 1.42 and 1.55 μm. We measured 0.4 dB squeezing (1.1 dB is inferred at the crystal) using 100 fs pulses. The wavelength and the intensity dependence, as well as variations in the local oscillator configuration were investigated. At higher intensities squeezing was shown to deteriorate owing to competing nonlinear processes. We also characterised the nonlinear optical properties of CdSe in this wavelengths range using an interferometric autocorrelator. In addition, we studied the feasibility of extending this technique to AlGaAs waveguides. The key problems are addressed and solutions are proposed. In a different experiment we used an AlGaAs waveguide to demonstrate for the first time photon-number squeezing by multi-photon absorption. By tuning the pump energy through the half bandgap energy we could effectively select two- or three-photon absorption as the dominant mechanism. Squeezing by these two mechanisms could be clearly distinguished and was found to be in good agreement with longstanding theoretical predictions. We also established the generality of the effect, by demonstrating the same mechanism in organic semiconductors, where it led to the first ever observation of squeezed light in an organic material. Finally, we present our measurements of photon-number squeezing in high-efficiency double heterojunction AlGaAs light-emitting diodes. We measured squeezing of up to 2.0 dB. In addition, we observed quantum noise correlations when several of these devices were connected in series.
126

Nonlinear Optical Properties of GaAs at 1.06 micron, picosecond Pulse Investigation and Applications

Cui, A.G. (Aiguo G.) 08 1900 (has links)
The author explores absorptive and refractive optical nonlinearities at 1.06 [mu]m in bulk, semi-insulating, undoped GaAs with a particular emphasis on the influence of the native deep-level defect known as EL2. Picosecond pump-probe experimental technique is used to study the speed, magnitude, and origin of the absorptive and refractive optical nonlinearities and to characterize the dynamics of the optical excitation of EL2 in three distinctly different undoped, semi-insulating GaAs samples. Intense optical excitation of these materials leads to the redistribution of charge among the EL2 states resulting in an absorptive nonlinearity due to different cross sections for electron and hole generation through this level. This absorptive nonlinearity is used in conjunction with the linear optical properties of the material and independent information regarding the EL2 concentration to extract the cross section ratio [sigma][sub p]/[sigma][sub e] [approx equal]0.8, where [sigma][sub p](e) is the absorption cross section for hole (electron) generation from EL2[sup +] (EL2[sup 0]). The picosecond pump-probe technique can be used to determine that EL2/EL2[sup +]density ratio in an arbitrary undoped, semi-insulating GaAs sample. The author describes the use of complementary picosecond pump-probe techniques that are designed to isolate and quantify cumulative and instantaneous absorptive and refractive nonlinear processes. Numerical simulations of the measurements are achieved by solving Maxwell equations with the material equations in a self-consistent manner. The numerical analysis together with the experimental data allows extraction of a set of macroscopic nonlinear optical parameters in undoped GaAs. The nonlinearities in this material have been used to construct three proof-of-principle nonlinear optical devices for use at 1.06 [mu]m: (1) a weak beam amplifier, (2) a polarization rotation optical switch, and (3) optical limiters.
127

Interface studies in silicon nitride/silicon carbide and gallium indium arsenide/gallium arsenide systems

Unal, Ozer January 1991 (has links)
No description available.
128

Design, Fabrication and Characterization of a GaAs/InxGa1-xAs/GaAs Heterojunction Bipolar Transistor

Lidsky, David 16 October 2014 (has links)
Designs for PnP GaAs/InxGa1-xAs/GaAs heterojunction bipolar transistors (HBTs) are proposed and simulated with the aid of commercial software. Band diagrams, Gummel plots and common emitter characteristics are shown for the specific case of x=1, x=0.7, and x linearly graded from 0.75 to 0.7. Of the three designs, it is found that the linearly graded case has the lowest leakage current and the highest current gain. IV curves for all four possible classes of InAs/GaAs heterojunction (nN, nP, pN, pP) are calculated. A pN heterojunction is fabricated and characterized. In spite of the 7% lattice mismatch between InAs and GaAs, the diode has an ideality factor of 1.26 over three decades in the forward direction. In the reverse direction, the leakage current grows exponentially with the magnitude of the bias, and shows an effective ideality factor of 3.17, in stark disagreement with simulation. IV curves are taken over a temperature range of 105 K to 405 and activation energies are extracted. For benchmarking the device processing and the characterization apparatus, a conventional GaAs homojunction diode was fabricated and characterized, showing current rectification ratio of 109 between plus one volt and minus one volt. Because the PnP material for the optimal HBT design was not available, an Npn GaAs/InAs/InAs HBT structure was processed, characterized, and analyzed. The Npn device fails in both theory and in practice; however, by making a real structure, valuable lessons were learned for crystal growth, mask design, processing, and metal contacts. / Master of Science
129

Advanced crystal growth techniques with III-V boron compound semiconductors

Whiteley, Clinton E. January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / James H. Edgar / Semiconducting icosahedral boron arsenide, B[subscript]12As[subscript]2, is an excellent candidate for neutron detectors and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B[subscript]12As[subscript]2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron and arsenic in a sealed quartz ampoule. B[subscript]12As[subscript]2 crystals of 8-10 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 hours and slowly cooled (3°C/hr). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), Raman spectroscopy, and defect selective etching confirmed that the crystals had the expected rhombohedral structure and a low density of defects (5x10[superscript]7 cm[superscript]-2). The concentrations of residual impurities (nickel, carbon, etc) were found to be relatively high (10[superscript]19 cm[superscript]-3 for carbon) as measured by secondary ion mass spectrometry (SIMS) and elemental analysis by energy dispersive x-ray spectroscopy (EDS). The boron arsenide crystals were found to have favorable electrical properties (μ = 24.5 cm[superscript]2 / Vs), but no interaction between a prototype detector and an alpha particle bombardment was observed. Thus, the flux growth method is viable for growing large B[subscript]12As[subscript]2 crystals, but the impurity concentrations remain a problem.
130

ACHIEVING HIGHER EFFICIENCY IN VIDEO / TELEMETRY / DIGITAL TRANSMITTERS USING LATERALLY DIFFUSED METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTORS (LDMOSFETs)

Lautzenhiser, Lloyd L. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / A 10- or 20-Watt, L- or S-band transmitter commonly consumes the majority of the available DC power on a telemetry pack -- often more than all the remaining components combined. A new family of transistors allows a substantial increase in DC to RF efficiency without the use of complex and costly switching regulators. With ever increasing data rates requiring more RF bandwidth (and correspondingly lower receiver sensitivities), transmitters using these transistors offer twice the RF power at little or no increase in DC current. Alternately, in other situations such as observation balloons, the same RF power can be achieved with approximately 40% less current resulting in significantly longer mission life. This paper describes the method for achieving higher efficiency transmitters using new LDMOSFETs.

Page generated in 0.0328 seconds