Spelling suggestions: "subject:"artificial""
241 |
Sistema de identificação e classificação de transientes em reatores nucleares / NUCLEAR REACTORS TRANSIENTS IDENTIFICATION AND CLASSIFICATION SYSTEMBianchi, Paulo Henrique 18 June 2008 (has links)
Este trabalho descreve o estudo e testes de um sistema capaz de identificar e classificar os transientes, ou estados transitórios, de sistemas termo-hidráulicos, utilizando a técnica de redes neurais artificiais do tipo mapas de características auto-organizáveis, com o objetivo de sua implantação nas novas gerações de reatores nucleares. A técnica desenvolvida neste trabalho consiste no uso de múltiplas redes para fazer a classificação e identificação dos estados transitórios, sendo cada uma especialista em um respectivo transitório do sistema, que competem entre si por meio do erro de quantização, que é uma medida gerada por estas redes neurais. Esta técnica se mostrou eficiente, apresentando características muito promissoras no que diz respeito ao desenvolvimento de novas funcionalidades em futuros projetos. Uma dessas características consiste no potencial de que a rede, além de responder qual estado transitório está em curso, também pode oferecer informações adicionais sobre esse transitório. / This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient.
|
242 |
Avaliação da gravidade da malária utilizando técnicas de extração de características e redes neurais artificiaisAlmeida, Larissa Medeiros de 17 April 2015 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-06-15T21:53:52Z
No. of bitstreams: 1
Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-16T15:05:39Z (GMT) No. of bitstreams: 1
Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-16T15:07:25Z (GMT) No. of bitstreams: 1
Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5) / Made available in DSpace on 2015-06-16T15:07:25Z (GMT). No. of bitstreams: 1
Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5)
Previous issue date: 2015-04-17 / Não Informada / About half the world's population lives in malaria risk areas. Moreover, given the
globalization of travel, these diseases that were once considered exotic and mostly tropical are
increasingly found in hospital emergency rooms around the world. And often when it comes
to experience in tropical diseases, expert opinion most of the time is not available or not
accessible in a timely manner. The task of an accurate and efficient diagnosis of malaria,
essential in medical practice, can become complex. And the complexity of this process
increases as patients have non-specific symptoms with a large amount of data and inaccurate
information involved. In this approach, Uzoka and colleagues (2011a), from clinical
information of 30 Nigerian patients with confirmed malaria, used the Analytic Hierarchy
Process method (AHP) and Fuzzy methodology to conduct the evaluation of the severity of
malaria. The results obtained were compared with the diagnosis of medical experts. This
paper develops a new methodology to evaluate the severity of malaria and compare with the
techniques used by Uzoka and colleagues (2011a). For this purpose the data set used is the
same of that study. The technique used is the Artificial Neural Networks (ANN). Are
evaluated three architectures with different numbers of neurons in the hidden layer, two
training methodologies (leave-one-out and 10-fold cross-validation) and three stopping
criteria, namely: the root mean square error, early stop and regularization. In the first phase,
we use the full database. Subsequently, the feature extraction methods are used: in the second
stage, the Principal Component Analysis (PCA) and in the third stage, the Linear
Discriminant Analysis (LDA). The best result obtained in the three phases, it was with the full
database, using the criterion of regularization associated with the leave-one-out method, of
83.3%. And the best result obtained in (Uzoka, Osuji and Obot, 2011) was with the fuzzy
network which revealed 80% accuracy / Cerca de metade da população mundial vive em áreas de risco da malária. Além disso, dada a
globalização das viagens, essas doenças que antes eram consideradas exóticas e
principalmente tropicais são cada vez mais encontradas em salas de emergência de hospitais
no mundo todo. E frequentemente quando se trata de experiência em doenças tropicais, a
opinião de especialistas na maioria das vezes está indisponível ou não acessível em tempo
hábil. A tarefa de chegar a um diagnóstico da malária preciso e eficaz, fundamental na prática
médica, pode tornar-se complexa. E a complexidade desse processo aumenta à medida que os
pacientes apresentam sintomas não específicos com uma grande quantidade de dados e
informação imprecisa envolvida. Nesse sentido, Uzoka e colaboradores (2011a), a partir de
informações clínicas de 30 pacientes nigerianos com diagnóstico confirmado de malária,
utilizaram a metodologia Analytic Hierarchy Process (AHP) e metodologia Fuzzy para
realizar a avaliação da gravidade da malária. Os resultados obtidos foram comparados com o
diagnóstico de médicos especialistas. Esta dissertação desenvolve uma nova metodologia para
avaliação da gravidade da malária e a compara com as técnicas utilizadas por Uzoka e
colaboradores (2011a). Para tal o conjunto de dados utilizados é o mesmo do referido estudo.
A técnica utilizada é a de Redes Neurais Artificiais (RNA). São avaliadas três arquiteturas
com diferentes números de neurônios na camada escondida, duas metodologias de
treinamento (leave-one-out e 10-fold cross-validation) e três critérios de parada, a saber: o
erro médio quadrático, parada antecipada e regularização. Na primeira fase, é utilizado o
banco de dados completo. Posteriormente, são utilizados os métodos de extração de
características: na segunda fase, a Análise dos Componentes Principais (do inglês, Principal
Component Analysis - PCA) e na terceira fase, a Análise Discriminante Linear (do inglês,
Linear Discriminant Analysis – LDA). O melhor resultado obtido nas três fases, foi com o
banco de dados completo, utilizando o critério de regularização, associado ao leave-one-out,
de 83.3%. Já o melhor resultado obtido em (Uzoka, Osuji e Obot, 2011) foi com a rede fuzzy
onde obteve 80% de acurácia.
|
243 |
Sistema de identificação e classificação de transientes em reatores nucleares / NUCLEAR REACTORS TRANSIENTS IDENTIFICATION AND CLASSIFICATION SYSTEMPaulo Henrique Bianchi 18 June 2008 (has links)
Este trabalho descreve o estudo e testes de um sistema capaz de identificar e classificar os transientes, ou estados transitórios, de sistemas termo-hidráulicos, utilizando a técnica de redes neurais artificiais do tipo mapas de características auto-organizáveis, com o objetivo de sua implantação nas novas gerações de reatores nucleares. A técnica desenvolvida neste trabalho consiste no uso de múltiplas redes para fazer a classificação e identificação dos estados transitórios, sendo cada uma especialista em um respectivo transitório do sistema, que competem entre si por meio do erro de quantização, que é uma medida gerada por estas redes neurais. Esta técnica se mostrou eficiente, apresentando características muito promissoras no que diz respeito ao desenvolvimento de novas funcionalidades em futuros projetos. Uma dessas características consiste no potencial de que a rede, além de responder qual estado transitório está em curso, também pode oferecer informações adicionais sobre esse transitório. / This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient.
|
244 |
Aprimoramento da classificação de isoladores poliméricos por medições termográficas e radiação UV usando processamento de imagens e RNA.RIBEIRO, Girlene Lima. 25 April 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-04-25T18:49:44Z
No. of bitstreams: 1
GIRLENE LIMA RIBEIRO – DISSERTAÇÃO (PPGEE) 2017.pdf: 3769966 bytes, checksum: 1e2c04beeac23084837591c1bfec0869 (MD5) / Made available in DSpace on 2018-04-25T18:49:44Z (GMT). No. of bitstreams: 1
GIRLENE LIMA RIBEIRO – DISSERTAÇÃO (PPGEE) 2017.pdf: 3769966 bytes, checksum: 1e2c04beeac23084837591c1bfec0869 (MD5)
Previous issue date: 2017-03-31 / CNPq / Nesta pesquisa é desenvolvida uma metodologia para aprimoramento da classificação de isoladores poliméricos por medições termográficas e radiação UV utilizando o Processamento Digital de Imagens (PDI) e Redes Neurais Artificiais (RNAs). A metodologia é baseada na análise da ocorrência de descargas corona e nas variações de temperatura ao longo do isolador a fim de classificá-los quanto seu estado de degradação. Cada isolador utilizado foi submetido à tensão de 133 kV fase-terra durante um período de 30 minutos, com o objetivo de ocasionar aquecimento e evidenciar descargas corona nos isoladores. As medições foram realizadas utilizando um detector de corona para medição de UV e os dados de temperatura foram adquiridos utilizando-se um termovisor. As imagens adquiridas pelos instrumentos de monitoramento, durante os ensaios, foram submetidas a um processamento digital de imagem, para extrair informações de densidade de pixels, persistência das descargas e distâncias relativas das áreas de descargas ao isolador. A partir de informações obtidas de imagens de infravermelho (temperatura) foi aplicada a estatística descritiva e o teste discriminante de Fisher, para apresentar ao sistema de classificação, parâmetros objetivos e com alto nível de separabilidade. O sistema de classificação utilizou RNA para determinar o estado de degradação dos isoladores. A classificação foi realizada de forma individual e combinada, com vetores formados pelos atributos UV e infravermelho. O sistema desenvolvido permitiu o auxílio à tomada de decisões quanto à necessidade de intervenção ou não aos isoladores. A classificação dos isoladores, de forma individual, obteve acurácia média para temperatura de 80,00% e UV 74,05%. A classificação dos isoladores, de forma combinada (UV e infravermelho), obteve acurácia média de 92,58%, evidenciando o aprimoramento na classificação. / This research presents a methodology for the improvement of the classification of polymeric insulators by using thermographic measurements and UV radiation in combination with Digital Image Processing (DIP) and Artificial Neural Networks (ANNs). The methodology is based on the analysis of the occurrence of corona discharges and temperature variations along the insulator in order to classify their stage of degradation. Each insulator was subjected to the 133 kV phase-to-ground voltage over a period of 30 minutes, in order to cause heating and corona discharges in the insulators. The experiments were performed using a corona detector for UV measurement and the temperature data were acquired using a thermal imager. The images acquired by the monitoring instruments during the tests were subjected to digital image processing to extract information of pixel density, persistence of discharges and relative distances from the discharge areas to the insulator. From information obtained through infrared (temperature) images descriptive statistics and Fisher's discriminant test were applied to present objective parameters with high level of separability to the classification system. The classification system used ANN to determine the insulators degradation state. The classification was performed in individual and in combination ways, with vectors formed by UV and infrared attributes. The developed system helped on the decision making, concerning to the necessity of intervention or not to the insulators. The classification of the insulators, in an individual way, obtained accuracy for temperature of 80.00% and UV 74.05%. The classification of the isolators, combined (UV and infrared), obtained an average accuracy of 92.58%, evidencing the improvement in the classification.
|
245 |
Comparação de arquiteturas de redes neurais para sistemas de reconheceimento de padrões em narizes artificiaisFERREIRA, Aida Araújo January 2004 (has links)
Made available in DSpace on 2014-06-12T15:58:28Z (GMT). No. of bitstreams: 2
arquivo4572_1.pdf: 1149011 bytes, checksum: 92aae8f6f9b5145bfcecb94d96dbbc0b (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2004 / Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco / Um nariz artificial é um sistema modular composto de duas partes principais: um sistema
sensor, formado de elementos que detectam odores e um sistema de reconhecimento de padrões que
classifica os odores detectados. Redes neurais artificiais têm sido utilizadas como sistema de
reconhecimento de padrões para narizes artificiais e vêm apresentando resultados promissores.
Desde os anos 80, pesquisas para criação de narizes artificiais, que permitam detectar e
classificar odores, vapores e gases automaticamente, têm tido avanços significativos. Esses
equipamentos podem ser utilizados no monitoramento ambiental para controlar a qualidade do ar, na
área de saúde para realizar diagnóstico de doenças e nas indústrias de alimentos para o controle de
qualidade e o monitoramento de processos de produção.
Esta dissertação investiga a utilização de quatro técnicas diferentes de redes neurais para criação
de sistemas de reconhecimento de padrões em narizes artificiais. O trabalho está dividido em quatro
partes principais: (1) introdução aos narizes artificiais, (2) redes neurais artificiais para sistema de
reconhecimento de padrões, (3) métodos para medir o desempenho de sistemas de reconhecimento de
padrões e comparar os resultados e (4) estudo de caso.
Os dados utilizados para o estudo de caso, foram obtidos por um protótipo de nariz artificial
composto por um arranjo de oito sensores de polímeros condutores, expostos a nove tipos diferentes
de aguarrás. Foram adotadas as técnicas Multi-Layer Perceptron (MLP), Radial Base Function (RBF),
Probabilistic Neural Network (PNN) e Time Delay Neural Network (TDNN) para criar os sistemas de
reconhecimento de padrões. A técnica PNN foi investigada em detalhes, por dois motivos principais: esta técnica é indicada para realização de tarefas de classificação e seu treinamento é feito em apenas
um passo, o que torna a etapa de criação dessas redes muito rápida. Os resultados foram comparados
através dos valores dos erros médios de classificação utilizando o método estatístico de Teste de
Hipóteses.
As redes PNN correspondem a uma nova abordagem para criação de sistemas de
reconhecimento de padrões de odor. Estas redes tiveram um erro médio de classificação de 1.1574%
no conjunto de teste. Este foi o menor erro obtido entre todos os sistemas criados, entretanto mesmo
com o menor erro médio de classificação, os testes de hipóteses mostraram que os classificadores
criados com PNN não eram melhores do que os classificadores criados com a arquitetura RBF, que
obtiveram um erro médio de classificação de 1.3889%. A grande vantagem de criar classificadores com
a arquitetura PNN foi o pequeno tempo de treinamento dos mesmos, chegando a ser quase imediato.
Porém a quantidade de nodos na camada escondida foi muito grande, o que pode ser um problema,
caso o sistema criado deva ser utilizado em equipamentos com poucos recursos computacionais. Outra
vantagem de criar classificadores com redes PNN é relativa à quantidade reduzida de parâmetros que
devem ser analisados, neste caso apenas o parâmetro relativo à largura da função Gaussiana precisou ser
investigado
|
246 |
Métodos de otimização para definição de arquiteturas e pesos de redes neurais MLPLINS, Amanda Pimentel e Silva January 2005 (has links)
Made available in DSpace on 2014-06-12T16:01:05Z (GMT). No. of bitstreams: 2
arquivo7154_1.pdf: 1370997 bytes, checksum: 1580b7b5979343826e4d0a3b88b57dac (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2005 / Esta dissertação propõe modificações na metodologia yamazaki para a otimização simultânea de arquiteturas e pesos de redes Multilayer Perceptron (MLP). O objetivo principal é propô-las em conjunto com as respectivas validações, visando tornar mais eficiente o processo de otimização. A base para o algoritmo híbrido de otimização são os algoritmos simulated annealing, tabu search e a metodologia yamazaki.
As modificações são realizadas nos critérios de implementação tais como mecanismo de geração de vizinhança, esquema de esfriamento e função de custo. Um dos pontos principais desta dissertação é a criação de um novo mecanismo de geração de vizinhança visando aumentar o espaço de busca. O esquema de esfriamento é de grande importância na convergência do algoritmo. O custo de cada solução é medido como média ponderada entre o erro de classificação para o conjunto de treinamento e a porcentagem de conexões utilizadas pela rede.
As bases de dados utilizadas nos experimentos são: classificação de odores provenientes de três safras de um mesmo vinho e classificação de gases. A fundamentação estatística para as conclusões observadas através dos resultados obtidos é realizada usando teste de hipóteses.
Foi realizado um estudo do tempo de execução separando as fases de otimização global da fase de refinamento local. Concluiu-se que com o novo mecanismo de geração de vizinhança fez desnecessário o uso do backpropagation obtendo assim um alto ganho em tempo de execução. O algoritmo híbrido de otimização apresentou, para ambas as bases de dados, o menor valor da média do erro de classificação do conjunto de teste e o menor valor da quantidade de conexões. Além disso, o tempo de execução foi reduzido em média 46.72%
|
247 |
Desenvolvimento de um sistema de identificação e classificação de transientes para um reator nuclear a água pressurizada integral / DEVELOPMENT OF A TRANSIENT IDENTIFICATION AND CLASSIFICATION SYSTEM TO AN INTEGRAL PRESSURIZED WATER REACTORIvan Dionysio Aronne 06 March 2009 (has links)
A demanda por energia no mundo moderno é crescente, em particular nos países em desenvolvimento. Dentre as fontes de energia atualmente disponíveis a opção nuclear tem merecido destaque pelas suas qualidades de não afetar o meio ambiente por meio de emissões de gases de efeito estufa e nem demandar grandes áreas. Porém, a sociedade tem requerido melhoria da segurança dos novos reatores e as empresas de energia necessitam maior disponibilidade das centrais. O projeto do IRIS, um reator nuclear integral a água pressurizada, vem atender a esses requisitos. Um sistema de identificação e classificação de transientes ajudaria a melhorar a segurança e a aumentar a disponibilidade do IRIS, melhorando sua competitividade. Como contribuição para o desenvolvimento de um sistema como esse foi desenvolvido e estudado o Sistema de Identificação e Classificação de Transientes SICT com capacidade de monitorar a operação da central e disponibilizar informações sobre seu estado operacional. O SICT foi desenvolvido usando a técnica de redes neuronais, mais especificamente os Mapas Auto-Organizáveis (Self-Organizing Maps - SOM). Para o treinamento do SICT foram usados resultados de simulação do IRIS com o código RELAP5. Para comprovar a metodologia de usar resultados de simulações, cujos valores têm características diferentes daqueles medidos, foi feito uma aplicação do SICT para uma instalação experimental, o Circuito Térmico NO 1 CT1. A partir de experimentos termo-hidráulicos no CT1 e de simulações deste com o RELAP5, pôde-se verificar a validade dessa metodologia. Tem-se disponível para estudos futuros uma nodalização do CT1 validada, uma nodalização do IRIS testada para vários transientes, normais e anormais, e um banco de dados de resultados de simulação do IRIS. Está também disponível, em um CD em anexo a esta tese, os arquivos fontes do aplicativo desenvolvido, SICT, e de alguns programas auxiliares, os dados dos experimentos realizados no CT1 e dados de entrada e resultados de simulações do CT1 com o RELAP5. / The demand for energy in the modern world is growing, particularly in the developing countries. The nuclear option has been deserving prominence for their qualities of not impacting the environment through emissions of greenhouse gases and nor to demand great areas. However society requests improvement in the safety of new reactors and the utilities request larger availability of the power plants. The IRIS project of an integral nuclear pressurized water reactor proposes to fulfill those requirements. A system for identification and classification of transients would help to improve the safety and to increase the availability of the IRIS increasing its competitiveness. In order to contribute to the development of such a system it was developed in this work a System for Identification and Classification of Transients SICT - capable of monitoring the operation of the reactor and of providing information on its operational state. SICT was developed using the technique of neural networks, more specifically the Self-Organizing Maps. Results of IRIS simulations with RELAP5 code were used to train the neural network of SICT. To demonstrate the correctness of the methodology of using simulation results, whose values have characteristics different from the measured ones, it was made a version of SICT for an experimental installation, the Thermal Circuit #1 - CT1. Experiments were run in this test facility and simulations of its operation were done with RELAP5. This CT1 version of SICT was then checked against the simulation and experimental data validating the methodology. As a result of the activities to develop SICT, it is now available for futures studies: the developed application, SICT, a database of experiments in CT1, a validated nodalização of CT1, a database of results of CT1 simulations, a nodalização of the IRIS tested for several normal and abnormal transients and a database with the results of IRIS simulations. Attached to this thesis is a CD with the source files of the application and of some auxiliary programs, the data from the experiments carried out in CT1 and the input data and simulation results of CT1 with RELAP5
|
248 |
Efeito da administração da Deslorelina por 70 dias na forma de implante na dinâmica folicular, perfil endócrino e expressão de receptores endométriais de estrógeno, progesterona e ocitocina de vacas nelore (Bos taurus indicus) /Marques Filho, Wolff Camargo. January 2011 (has links)
Orientador: João Carlos Pinheiro Ferreira / Banca: Nereu Carlos Prestes / Banca: Sony Dimas Bicudo / Banca: Inês Cristina Giometti / Banca: Jeanne Broch Siqueira / Resumo: O objetivo deste foi avaliar os efeitos da utilização de implantes subcutâneos de Deslorelina (agonista de GnRH-Suprelorin®) por 70 dias sob a dinâmica folicular, secreção de FSH, LH e P4 e, a expressão gênica e proteica dos receptores endometriais de estrógeno e (E R e E R), de progesterona isoformas A e B (PABR e PBR) e de ocitocina (OTR) em vacas Nelore (Bos taurus indicus). Foi sincronizada a ovulação de 15 vacas Nelore com escore de condição corporal (ECC) 3 e, no D0 foram aleatoriamente selecionados 7 animais para serem submetidos a implantação subcutânea de Deslorelina por 70 dias. O exame ultra-sonográfico foi realizado para caracterização da dinâmica folicular e os folículos foram classicados em classes: I (< 0,4 cm), II (0,4-0,6cm) e III (> 0,6cm). Amostras de sangue foram coletadas para mensuração das concentrações plasmáticas de FSH, LH e P4. A pulsatilidade e os picos de LH foram determinados a partir de amostras sanguíneas coletadas a cada 15 minutos por 6 horas em 4 vacas escolhidas aleatoriamente nos D20 e D62. A mensuração da expressão proteica dos E R, E R, PABR e PBR no epitélio glandular e estroma uterino foram mensurados por meio da técnica da imunoistoquímica e, a expressão gênica dos E R, E R, PABR e OTR foi avaliada com auxílio da técnica de qRT-PCR, ambas... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The objective this study is to evaluate the effects of subcutaneous implant Deslorelin (GnRHa-Suprelorin®) by 70 days on the endocrine dynamic, the follicular development and, gene and protein expression of endometrial receptors of estrogen and (E R and E R), progesterone isoforms A and B (PABR and PBR), and oxytocin (OTR) of Nelore (Bos taurus indicus) cows . Ovulation of 15 Nelore cows with BCS 3 was synchronized following of implantation of Deslorelin in 7 animals for 70 days. During this period, the ovaries were scanned by ultrasonography to characterize the follicular dynamics, where the follicles were divided in class: I (< 0.4 cm), II (0.4-0.6 cm) and III (> 0.6 cm). Blood samples were collected before of each ultrasonographic exam for later measurement of plasma FSH, LH and P4. The assessment of LH pulsatile secretion was measured on blood samples collected every 15 minutes for six hours through the jugular catheterization in fourrandomly chosen cows on D20 and D62. The protein expression of E R and E R, PABR and PBR of endometrial glandular epithelial and stromal was measured using the technique of immunohistochemistry and the quantification of gene expression of E R, E R, PABR and OTR by qRT-PCR technique from fragments collected through endometrials biopsies on days 0, 4, 20 and 27. Others two samples of endometrium were used for. The comparison between the moments of the measures was performed using the nonparametrics tests of the Friedman and Fisher's Exact. The relationship between the results of follicular dynamics, gene and protein expression was performed by Pearson correlation, all with a significance level of 0.05. During the 70 days of implantation of Deslorelin neither animal ovulated, indicating that the preovulatory peak of LH was abolished. The maximum number of follicles... (Complete abstract click electronic access below) / Doutor
|
249 |
[en] ARTIFICIAL NEURAL NETWORK MODELING FOR QUALITY INFERENCE OF A POLYMERIZATION PROCESS / [pt] MODELO DE REDES NEURAIS ARTIFICIAIS PARA INFERÊNCIA DA QUALIDADE DE UM PROCESSO POLIMÉRICOJULIA LIMA FLECK 26 January 2009 (has links)
[pt] O presente trabalho apresenta o desenvolvimento de um
modelo neural para a inferência da qualidade do polietileno
de baixa densidade (PEBD) a partir dos valores das
variáveis de processo do sistema reacional. Para tal, fez-
se uso de dados operacionais de uma empresa petroquímica,
cujo pré-processamento incluiu a seleção de variáveis,
limpeza e normalização dos dados selecionados e
preparação dos padrões. A capacidade de inferência do
modelo neural desenvolvido neste estudo foi comparada com a
de dois modelos fenomenológicos existentes. Para tal,
utilizou-se como medida de desempenho o valor do erro
médio absoluto percentual dos modelos, tendo como
referência valores experimentais do índice de fluidez.
Neste contexto, o modelo neural apresentou-se
como uma eficiente ferramenta de modelagem da qualidade do
sistema reacional de produção do PEBD. / [en] This work comprises the development of a neural network-
based model for quality inference of low density
polyethylene (LDPE). Plant data corresponding to
the process variables of a petrochemical company`s LDPE
reactor were used for model development. The data were
preprocessed in the following manner: first,
the most relevant process variables were selected, then
data were conditioned and normalized. The neural network-
based model was able to accurately predict the
value of the polymer melt index as a function of the
process variables. This model`s performance was compared
with that of two mechanistic models
developed from first principles. The comparison was made
through the models` mean absolute percentage error, which
was calculated with respect to experimental values of the
melt index. The results obtained confirm the neural
network model`s ability to infer values of quality-related
measurements of the LDPE reactor.
|
250 |
Análise do desempenho de redes neurais artificiais no monitoramento sazonal de macrófitas no reservatório de Salto Grande e nas mudanças no uso e cobertura da terra do entorno /Tolentino, Franciele Marques January 2019 (has links)
Orientador: Maria de Lourdes Boeno Trindade Galo / Resumo: As formas de uso e cobertura da terra no entorno de corpos d’água é um dos fatores que mais impactam águas continentais. Diante disso, é que ambientes aquáticos se tornam cada vez mais susceptíveis a processos de eutrofização, o que favorece a proliferação de macrófitas. Uma maneira de monitorar a proliferação de macrófitas, assim como alterações nas formas de uso e cobertura da terra no entorno de reservatórios é a partir de dados de sensoriamento remoto. Sensores remotos surgem como uma alternativa com grande potencial para a análise da variabilidade espaço-temporal de macrófitas aquáticas. Classificadores baseados em aprendizado máquina são cada vez mais utilizados em alternativa às técnicas tradicionais, uma vez que alguns desses algoritmos não requerem a distribuição estatística dos dados permitindo assim a inclusão de atributos não espectrais no processo de classificação. Este estudo teve por objetivo avaliar o potencial de redes neurais artificiais (RNAs) no monitoramento sazonal da dispersão de macrófitas aquáticas no reservatório de Salto Grande, Americana (SP), simultaneamente às alterações no uso e cobertura da terra do seu entorno. No processo de classificação, foram realizados diversos experimentos a fim de selecionar os atributos e arquiteturas de RNA mais adequados para discriminar tanto as macrófitas no corpo hídrico, quanto os tipos de uso e cobertura da terra no seu entorno. Os dados de entrada constituíram-se de bandas espectrais do sistema OLI/Landsat-8, i... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The land use/cover surrounding water bodies is one of the factors that most impact continental waters. Thus, aquatic environments become increasingly susceptible to eutrophication processes, which favors the growth of macrophytes. One way to monitor the growth of macrophytes as well as changes in the forms of land use/cover surrounding reservoirs, is from remote sensing data. Remote sensors emerge as an alternative with great potential for the analysis of spatio-temporal variability of aquatic macrophytes. Classifiers based on machine learning are alternatives increasingly used in detriment to traditional techniques. Those algorithms do not require the statistical distribution of the data, thus allowing the inclusion of non-spectral attributes in the classification process. In this sense, this wok aims to evaluate the potential of artificial neural network (ANN) in the seasonal monitoring of aquatic macrophytes dispersion in Salto Grande, Americana (SP), simultaneously with the changes monitoring in the land use/cover of the surrounding areas. In the classification process, several experiments were performed to select the most appropriate attributes, as well as the best ANN architecture to discriminate the macrophytes in the water body and the types of land use/cover of the surrounding. The input data consisted of OLI / Landsat-8 system spectral bands, texture images derived from OLI images, normalized spectral indices for vegetation enhancement (NDVI), moisture content (MNDW... (Complete abstract click electronic access below) / Mestre
|
Page generated in 0.0602 seconds