• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 20
  • 14
  • 7
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 102
  • 102
  • 52
  • 40
  • 38
  • 34
  • 21
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Effects of Reclaimed Asphalt Pavement on Mechanical Properties of Base Materials

Cooley, Dane A. 17 November 2005 (has links) (PDF)
Reuse of reclaimed asphalt pavement (RAP) in the full-depth recycling (FDR) process is a cost-effective and environmentally responsible method of asphalt pavement reconstruction. Although FDR has been used for several years in some locations, the effect of RAP on the mechanical properties of recycled base materials has not been well documented. The purpose of this research was to investigate the influence of RAP on the mechanical properties of recycled base materials typical of northern Utah. Two sources of RAP, two sources of base, and RAP contents of 0, 25, 50, 75, and 100 percent were utilized in a full-factorial experimental design with three replicates of each unique combination. Testing procedures consisted of material classifications, compaction tests, and evaluations of strength, stiffness, and moisture susceptibility of each material blend. The California bearing ratio (CBR) test was used to measure strength, the free-free resonant column test was used to measure stiffness, and the tube suction test (TST) was used to measure moisture susceptibility. Once all the testing was completed, a fixed effects analysis of variance (ANOVA) was performed on each of the test results, or dependent variables. The independent variables were RAP content, RAP type, and base type, together with all their interactions. Results of the ANOVA were used to quantify the effects of RAP on the mechanical properties of the base materials. The data indicate that CBR values decrease as RAP content increases, with the greatest percentage reduction occurring with the addition of 25 percent RAP. For stiffness testing at the optimum moisture content determined for each blend, the general trend was a decrease in stiffness from 0 percent RAP to 25 percent RAP, followed by a steady increase in stiffness as the RAP content was increased from 25 to 100 percent. Following a 72-hr drying period at 140ºF, however, the general trend reversed; an increase in stiffness occurred as the RAP content was increased from 0 to 25 percent, and a steady decrease in stiffness was observed for RAP contents above 25 percent. The TST data suggest that additions of 25 and 50 percent RAP actually increase the moisture susceptibility of the recycled material compared to the neat base, although the blended material tested in this study was classified as non-moisture-susceptible when the RAP content was 75 percent or higher. Because of the marked impact of RAP content on the mechanical properties of recycled base materials, engineers should accurately determine asphalt layer thicknesses prior to pavement reconstruction and carefully determine the optimum blending depth for each project. While asphalt milling or base overlays may be required in some locations to avoid excessively high RAP contents, reduced blending depths may be warranted in other areas to prevent the use of low RAP contents. In summary, while the use of RAP in the FDR process is environmentally responsible and offers potentially significant cost savings, thicker pavement base layers, base stabilization, or both may be required in many instances to ensure adequate long-term pavement performance.
82

Evaluation of Portable Devices for Monitoring Microcracking of Cement-Treated Base Layers

Hope, Charles A. 17 March 2011 (has links) (PDF)
A relatively new method used to reduce the amount of cement-treated base (CTB) shrinkage cracking is microcracking of the CTB shortly after construction. Three portable instruments used in this study for monitoring the microcracking process include the heavy Clegg impact soil tester (CIST), portable falling-weight deflectometer (PFWD), and soil stiffness gauge (SSG). The specific objectives of this research were 1) to evaluate the sensitivity of each of the three portable instruments to microcracking, and 2) to compare measurements of CTB stiffness reduction obtained using the three devices. The test locations included in this study were Redwood Drive and Dale Avenue in Salt Lake City, Utah; 300 South in Spanish Fork, Utah; and a private access road in Wyoming. Experimental testing in the field consisted of randomized stationing at each site; sampling the CTB immediately after the cement was mixed into the reclaimed base material; compacting specimens for laboratory testing; and testing the CTB immediately after construction, immediately before microcracking, immediately after each pass of the vibratory roller during the microcracking process, and, in some instances, three days after microcracking. Several linear regression analyses were performed after data were collected using the CIST, PFWD, and SSG during the microcracking process to meet the objectives of this research. Results from the statistical analyses designed to evaluate the sensitivity of each of the three portable instruments to microcracking indicate that the PFWD and SSG are sensitive to microcracking, while the CIST is insensitive to microcracking. Results from the statistical analyses designed to compare measurements of CTB stiffness reduction demonstrate that neither of the instrument correlations involving the CIST are statistically significant. Only the correlation between the PFWD and SSG was shown to be statistically significant. Given the results of this research, engineers and contractors should utilize the PFWD or SSG for monitoring microcracking of CTB layers. The heavy CIST is unsuitable for monitoring microcracking and should not be used. For deriving target CTB stiffness reductions measured using either the PFWD or SSG from specified targets measured using the other, engineers and contractors should utilize the correlation chart developed in this research.
83

Multi-Scale Approach to Design Sustainable Asphalt Paving Materials

Holcombe, Evan W. 19 September 2017 (has links)
No description available.
84

In-Situ Recycling: Applications, Guidelines, and Case Study for Local Governments

Bartku, Elaine Cleare 23 July 2014 (has links)
This thesis investigates the application of In-Situ Recycling and provides guidelines for localities to aid in the selection of recycling methods, as well as documents a local government's experience with Cold In-Place Recycling. The recycling methods discussed in this study include Cold In-Place Recycling (CIR), Hot In-Place Recycling (HIR), and Full Depth Reclamation (FDR). These methods are performed onsite and in-place in a continuous process of milling, mixing, and placement. The In-Situ Recycling guidelines include suggestions based on: traffic characteristics, existing road condition, distress types, road access, local climate, road geometry, and other road characteristics. The guidelines are based on information from sources including NCHRP Synthesis 421, American Recycling and Reclamation Association (ARRA), FHWA, and state agencies with recycling experience. This study also resulted in documenting obstacles that localities may face when in-situ recycling, as well as the impact of limited experience with recycling. The study also evaluated the construction of Cold In-Place Recycled pavement sections in Christiansburg, VA, using Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR). Additionally, using the FWD and GPR data, alternate recycled designs were proposed in addition to a cost comparison to a conventional design. / Master of Science
85

Problematika použití R - materiálu do asfaltových směsí / Usage of recycled materials to asphalt mixtures

Zítka, Patrik January 2015 (has links)
This thesis deals with the R-material use in asphalt mixtures. In the theoretical part, different kinds of flexible pavement recycling and ways of adding R-material into asphalt mixtures are discussed. The practical part deals with asphalt layers design and manufacture, specifically for binder course ACL 16+. R-material content in the blends is 0%, 20%, 25% and 30%. EVOTHERM MA3 rejuvenator is used as additive for softening of R-material. Various mixtures are compared based on tests - resistance to permanent deformation, resistance to the effects of water and low temperature properties.
86

Použití R-materiálu do asfaltových směsí typu asfaltový koberec mastixový / Usage of reclaimed asphalt pavement in stone mastic asphalt

Coufalíková, Iva January 2019 (has links)
The dissertation deals with the possibilities of adding recycled asphalt pavement (RAP) to the stone mastic asphalt (SMA), which is increasingly being promoted due to its good resistance to permanent deformations and high traffic load. Thanks to the use of high-quality input materials in production, this is a valuable material source. The theoretical part describes composition of SMA mixture and problems of pavement recycling. The practical part deals with SMA 11S laboratory designs with RAP ratio of 0 to 50%. Based on these suggestions, a trial section with 17 variants was placed, which varied with the content and quality of the RAP and the used additives. All variants have been subjected to functional testing not only on mixtures but also on recovered binders. The results obtained during the dissertation were used to build a certified methodology named "Methodology of application RAP to Stone Mastic Asphalt." In conclusion, the results of the dissertation are summarized.
87

Využití polymerem modifikovaných asfaltů a oživovacích přísad v asfaltových směsích / Usage of polymer modified bitumens and rejuvenators in asphalt mixtures

Maláník, Stanislav Unknown Date (has links)
Diploma thesis deals with the influence of various dosing of Reclaimed asphalt pavement (RAP) using modified bitumen on the properties of asphalt concrete (ACO 11+) of cemented by polymer modified bitumen, while a rejuvenating agents are added into asphalt mixtures. The theoretical part of the thesis summarizes the basic knowledge of pavement recycling, polymer modified bitumens and their reuse in asphalt mixtures. The practical part deals with laboratory tests of ACO 11+ mixtures with the RAP proportion of 0 % to 50 %. The asphalt mixtures compared are evaluated by means of the Thermal Stress Restrained Specimen Test (TSRST) and Stiffness test. The results obtained within the diploma thesis can approximate the issue of recycling of asphalt mixtures with polymer modified bitumens.
88

Investigation of asphalt compaction in vision of improving asphalt pavements

Ghafoori Roozbahany, Ehsan January 2015 (has links)
Asphalt joints are potentially weakest parts of every pavement. Despite of their importance, reliable tools for measuring their mechanical properties for design and performance assessments are still scarce. This is particularly true for cold joints when attaching a new hot pavement to a cold existing one as in case of large patches for pavement repair. In this study, three static fracture testing methods, i.e. indirect tensile test (IDT), direct tension test (DTT) and 4 point bending (4PB), were adapted and used for evaluating different laboratory made joints. The results suggested that joints with inclined interfaces and also the ones with combined interface treatments (preheated and sealed) seemed to show more promising behaviors than the vertical and untreated joints. It was also confirmed that compacting from the hot side towards the joint improved the joint properties due to imposing a different flow pattern as compared to the frequent compaction methods. The latter finding highlighted the importance of asphalt particle rearrangements and flow during the compaction phase as a very little known subject in asphalt industry. Studies on compaction are of special practical importance since they may also contribute to reducing the possibility of over-compaction and aggregate crushing. Therefore, in this study, a new test method, i.e. Flow Test (FT), was developed to simulate the material flow during compaction. Initially, asphalt materials were substituted by geometrically simple model materials to lower the level of complexity for checking the feasibility of the test method as well as modeling purposes. X-ray radiography images were also used for capturing the flow patterns during the test. Results of the FT on model materials showed the capability of the test method to clearly distinguish between specimens with different characteristics. In addition, a simple discrete element model was applied for a better understanding of the test results as a basis for further improvements when studying real mixtures. Then, real mixtures were prepared and tested under the same FT configuration and the results were found to support the findings from the feasibility tests. The test method also showed its potential for capturing flow pattern differences among different mixtures even without using the X-ray. Therefore, the FT was improved as an attempt towards developing a systematic workability test method focusing on the flow of particles at early stages of compaction and was called the Compaction Flow Test (CFT). The CFT was used for testing mixtures with different characteristics to identify the parameters with highest impact on the asphalt particle movements under compaction forces. X-ray investigations during the CFT underlined the reliability of the CFT results. In addition, simple discrete element models were successfully generated to justify some of the CFT results. / <p>QC 20151104</p>
89

Evaluation of Laboratory Durability Tests for Stabilized Aggregate Base Materials

Roper, Matthew B. 19 May 2007 (has links) (PDF)
The Portland Cement Association commissioned a research project at Brigham Young University to compare selected laboratory durability tests available for assessing stabilized aggregate base materials. The laboratory research associated with this project involved two granular base materials, three stabilizers at three concentration levels each, and three durability tests in a full-factorial experimental design. The granular base materials consisted of an aggregate-reclaimed asphalt pavement blend obtained from Interstate 84 (I-84) and a crushed limestone obtained from U.S. Highway 91 (US-91), while the three stabilizer types included Class C fly ash, lime-fly ash, and Type I/II Portland cement. Specimens were tested for durability using the freeze-thaw test, the vacuum saturation test, and the tube suction test. Analyses of the test results indicated that the unconfined compressive strength (UCS) and retained UCS were higher for specimens tested in freeze-thaw cycling than the corresponding values associated with vacuum saturation testing. This observation suggests that the vacuum saturation test is more severe than the freeze-thaw test for materials similar to those evaluated in this research. The analyses also indicated that the I-84 material retained more strength during freeze-thaw cycling and vacuum saturation and exhibited lower final dielectric values during tube suction testing than the US-91 material. Although the I-84 material performed better than the US-91 material, the I-84 material required higher stabilizer concentrations to reach the target 7-day UCS values specified in this research. After freeze-thaw testing, the Class C fly-treated specimens were significantly stronger than both lime-fly ash- and cement-treated specimens. In the vacuum saturation test, none of the three stabilizer types were significantly different from each other with respect to either UCS or retained UCS. Dielectric values measured during tube suction testing were lowest for cement-treated specimens, indicating that cement performed better than other stabilizers in reducing the moisture/frost susceptibility of the treated materials. The results also show that, as the stabilizer concentration level increased from low to high, specimens performed better in nearly all cases. A strong correlation was identified between UCS after the freeze-thaw test and UCS after the vacuum saturation test, while very weak correlations were observed between the final dielectric value after tube suction testing and all other response variables. Differences in variability between test results were determined to be statistically insignificant. Engineers interested in specifying a comparatively severe laboratory durability test should consider vacuum saturation testing for specimens treated with stabilizers similar to those evaluated in this research. The vacuum saturation test is superior to both the freeze-thaw and tube suction tests because of the shorter duration and lack of a need for daily specimen monitoring. Although the Class C fly ash used in this research performed well, further investigation of various sources of Class C fly ash is recommended because of the variability inherent in that material. Similar research should be performed on subgrade soils, which are also routinely stabilized in pavement construction. Research related to long-term field performance of stabilized materials should be conducted to develop appropriate thresholds for laboratory UCS values in conjunction with vacuum saturation testing.
90

Variability in Construction of Cement-Treated Base Layers: Probabilistic Analysis of Pavement Life Using Mechanistic-Empirical Approach

Rogers, Tyler J. 23 November 2009 (has links) (PDF)
The primary objective of this research was to quantify the improvement in service life of a flexible pavement constructed using full-depth reclamation (FDR) in conjunction with cement stabilization when specified reductions in the spatial variability of specific construction-related parameters are achieved. This study analyzed pavement data obtained through field and laboratory testing of a reconstruction project in northern Utah. Data analyses included multivariate regression, Monte Carlo simulation, and mechanistic-empirical analyses of a model pavement structure. The results of the research show a steadily increasing trend in 28-day unconfined compressive strength of the cement-treated base (CTB) layer with increasing reductions in variability for cement content, moisture content, and reclaimed asphalt pavement (RAP) content across each of five different reliability levels. The most significant increases in CTB strength occurred with reductions in the standard deviations of moisture content and RAP content. Decreasing the variability of cement content did not provide significant additional strength to the CTB layer. Therefore, when involved on FDR projects, members of the pavement industry should focus energy on reducing the variability of both moisture content and RAP content, which both significantly impact pavement life, to achieve high-quality, long-lasting pavements.

Page generated in 0.0521 seconds