11 |
The mapping task and its various applications in next-generation sequencingOtto, Christian 23 March 2015 (has links) (PDF)
The aim of this thesis is the development and benchmarking of
computational methods for the analysis of high-throughput data from
tiling arrays and next-generation sequencing. Tiling arrays have been
a mainstay of genome-wide transcriptomics, e.g., in the identification
of functional elements in the human genome. Due to limitations of
existing methods for the data analysis of this data, a novel
statistical approach is presented that identifies expressed segments
as significant differences from the background distribution and thus
avoids dataset-specific parameters. This method detects differentially
expressed segments in biological data with significantly lower false
discovery rates and equivalent sensitivities compared to commonly used
methods. In addition, it is also clearly superior in the recovery of
exon-intron structures. Moreover, the search for local accumulations
of expressed segments in tiling array data has led to the
identification of very large expressed regions that may constitute a
new class of macroRNAs.
This thesis proceeds with next-generation sequencing for which various
protocols have been devised to study genomic, transcriptomic, and
epigenomic features. One of the first crucial steps in most NGS data
analyses is the mapping of sequencing reads to a reference
genome. This work introduces algorithmic methods to solve the mapping
tasks for three major NGS protocols: DNA-seq, RNA-seq, and
MethylC-seq. All methods have been thoroughly benchmarked and
integrated into the segemehl mapping suite.
First, mapping of DNA-seq data is facilitated by the core mapping
algorithm of segemehl. Since the initial publication, it has been
continuously updated and expanded. Here, extensive and reproducible
benchmarks are presented that compare segemehl to state-of-the-art
read aligners on various data sets. The results indicate that it is
not only more sensitive in finding the optimal alignment with respect
to the unit edit distance but also very specific compared to most
commonly used alternative read mappers. These advantages are
observable for both real and simulated reads, are largely independent
of the read length and sequencing technology, but come at the cost of
higher running time and memory consumption.
Second, the split-read extension of segemehl, presented by Hoffmann,
enables the mapping of RNA-seq data, a computationally more difficult
form of the mapping task due to the occurrence of splicing. Here, the
novel tool lack is presented, which aims to recover missed RNA-seq
read alignments using de novo splice junction information. It
performs very well in benchmarks and may thus be a beneficial
extension to RNA-seq analysis pipelines.
Third, a novel method is introduced that facilitates the mapping of
bisulfite-treated sequencing data. This protocol is considered the
gold standard in genome-wide studies of DNA methylation, one of the
major epigenetic modifications in animals and plants. The treatment of
DNA with sodium bisulfite selectively converts unmethylated cytosines
to uracils, while methylated ones remain unchanged. The bisulfite
extension developed here performs seed searches on a collapsed
alphabet followed by bisulfite-sensitive dynamic programming
alignments. Thus, it is insensitive to bisulfite-related mismatches
and does not rely on post-processing, in contrast to other methods. In
comparison to state-of-the-art tools, this method achieves
significantly higher sensitivities and performs time-competitive in
mapping millions of sequencing reads to vertebrate
genomes. Remarkably, the increase in sensitivity does not come at the
cost of decreased specificity and thus may finally result in a better
performance in calling the methylation rate.
Lastly, the potential of mapping strategies for de novo genome
assemblies is demonstrated with the introduction of a new guided
assembly procedure. It incorporates mapping as major component and
uses the additional information (e.g., annotation) as guide. With this
method, the complete mitochondrial genome of Eulimnogammarus verrucosus has been
successfully assembled even though the sequencing library has been
heavily dominated by nuclear DNA.
In summary, this thesis introduces algorithmic methods that
significantly improve the analysis of tiling array, DNA-seq, RNA-seq,
and MethylC-seq data, and proposes standards for benchmarking NGS read
aligners. Moreover, it presents a new guided assembly procedure that
has been successfully applied in the de novo assembly of a
crustacean mitogenome. / Diese Arbeit befasst sich mit der Entwicklung und dem Benchmarken von
Verfahren zur Analyse von Daten aus Hochdurchsatz-Technologien, wie
Tiling Arrays oder Hochdurchsatz-Sequenzierung. Tiling Arrays bildeten
lange Zeit die Grundlage für die genomweite Untersuchung des
Transkriptoms und kamen beispielsweise bei der Identifizierung
funktioneller Elemente im menschlichen Genom zum Einsatz. In dieser
Arbeit wird ein neues statistisches Verfahren zur Auswertung von
Tiling Array-Daten vorgestellt. Darin werden Segmente als exprimiert
klassifiziert, wenn sich deren Signale signifikant von der
Hintergrundverteilung unterscheiden. Dadurch werden keine auf den
Datensatz abgestimmten Parameterwerte benötigt. Die hier
vorgestellte Methode erkennt differentiell exprimierte Segmente in
biologischen Daten bei gleicher Sensitivität mit geringerer
Falsch-Positiv-Rate im Vergleich zu den derzeit hauptsächlich
eingesetzten Verfahren. Zudem ist die Methode bei der Erkennung von
Exon-Intron Grenzen präziser. Die Suche nach Anhäufungen
exprimierter Segmente hat darüber hinaus zur Entdeckung von sehr
langen Regionen geführt, welche möglicherweise eine neue
Klasse von macroRNAs darstellen.
Nach dem Exkurs zu Tiling Arrays konzentriert sich diese Arbeit nun
auf die Hochdurchsatz-Sequenzierung, für die bereits verschiedene
Sequenzierungsprotokolle zur Untersuchungen des Genoms, Transkriptoms
und Epigenoms etabliert sind. Einer der ersten und entscheidenden
Schritte in der Analyse von Sequenzierungsdaten stellt in den meisten
Fällen das Mappen dar, bei dem kurze Sequenzen (Reads) auf ein
großes Referenzgenom aligniert werden. Die vorliegende Arbeit
stellt algorithmische Methoden vor, welche das Mapping-Problem für
drei wichtige Sequenzierungsprotokolle (DNA-Seq, RNA-Seq und
MethylC-Seq) lösen. Alle Methoden wurden ausführlichen
Benchmarks unterzogen und sind in der segemehl-Suite integriert.
Als Erstes wird hier der Kern-Algorithmus von segemehl vorgestellt,
welcher das Mappen von DNA-Sequenzierungsdaten ermöglicht. Seit
der ersten Veröffentlichung wurde dieser kontinuierlich optimiert
und erweitert. In dieser Arbeit werden umfangreiche und auf
Reproduzierbarkeit bedachte Benchmarks präsentiert, in denen
segemehl auf zahlreichen Datensätzen mit bekannten
Mapping-Programmen verglichen wird. Die Ergebnisse zeigen, dass
segemehl nicht nur sensitiver im Auffinden von optimalen Alignments
bezüglich der Editierdistanz sondern auch sehr spezifisch im
Vergleich zu anderen Methoden ist. Diese Vorteile sind in realen und
simulierten Daten unabhängig von der Sequenzierungstechnologie
oder der Länge der Reads erkennbar, gehen aber zu Lasten einer
längeren Laufzeit und eines höheren Speicherverbrauchs.
Als Zweites wird das Mappen von RNA-Sequenzierungsdaten untersucht,
welches bereits von der Split-Read-Erweiterung von segemehl
unterstützt wird. Aufgrund von Spleißen ist diese Form des
Mapping-Problems rechnerisch aufwendiger. In dieser Arbeit wird das
neue Programm lack vorgestellt, welches darauf abzielt, fehlende
Read-Alignments mit Hilfe von de novo Spleiß-Information zu
finden. Es erzielt hervorragende Ergebnisse und stellt somit eine
sinnvolle Ergänzung zu Analyse-Pipelines für
RNA-Sequenzierungsdaten dar.
Als Drittes wird eine neue Methode zum Mappen von Bisulfit-behandelte
Sequenzierungsdaten vorgestellt. Dieses Protokoll gilt als
Goldstandard in der genomweiten Untersuchung der DNA-Methylierung,
einer der wichtigsten epigenetischen Modifikationen in Tieren und
Pflanzen. Dabei wird die DNA vor der Sequenzierung mit Natriumbisulfit
behandelt, welches selektiv nicht methylierte Cytosine zu Uracilen
konvertiert, während Methylcytosine davon unberührt
bleiben. Die hier vorgestellte Bisulfit-Erweiterung führt die
Seed-Suche auf einem reduziertem Alphabet durch und verifiziert die
erhaltenen Treffer mit einem auf dynamischer Programmierung
basierenden Bisulfit-sensitiven Alignment-Algorithmus. Das verwendete
Verfahren ist somit unempfindlich gegenüber
Bisulfit-Konvertierungen und erfordert im Gegensatz zu anderen
Verfahren keine weitere Nachverarbeitung. Im Vergleich zu aktuell
eingesetzten Programmen ist die Methode sensitiver und benötigt
eine vergleichbare Laufzeit beim Mappen von Millionen von Reads auf
große Genome. Bemerkenswerterweise wird die erhöhte
Sensitivität bei gleichbleibend guter Spezifizität
erreicht. Dadurch könnte diese Methode somit auch bessere
Ergebnisse bei der präzisen Bestimmung der Methylierungsraten
erreichen.
Schließlich wird noch das Potential von Mapping-Strategien für
Assemblierungen mit der Einführung eines neuen,
Kristallisation-genanntes Verfahren zur unterstützten
Assemblierung aufgezeigt. Es enthält Mapping als Hauptbestandteil
und nutzt Zusatzinformation (z.B. Annotationen) als
Unterstützung. Dieses Verfahren ermöglichte die erfolgreiche
Assemblierung des kompletten mitochondrialen Genoms von Eulimnogammarus verrucosus trotz
einer vorwiegend aus nukleärer DNA bestehenden genomischen
Bibliothek.
Zusammenfassend stellt diese Arbeit algorithmische Methoden vor,
welche die Analysen von Tiling Array, DNA-Seq, RNA-Seq und MethylC-Seq
Daten signifikant verbessern. Es werden zudem Standards für den
Vergleich von Programmen zum Mappen von Daten der
Hochdurchsatz-Sequenzierung vorgeschlagen. Darüber hinaus wird ein
neues Verfahren zur unterstützten Genom-Assemblierung vorgestellt,
welches erfolgreich bei der de novo-Assemblierung eines
mitochondrialen Krustentier-Genoms eingesetzt wurde.
|
12 |
Self-assembly effects of filamentous actin bundlesSchnauß, Jörg 14 July 2015 (has links)
Das Zytoskelett einer eukaryotischen Zelle besteht aus drei Hauptbestandteilen: Aktin, Intermediärfilamenten und Mikrotubuli. Die vorliegende Arbeit beschäftigt sich mit dem Protein Aktin, welches unter physiologischen Bedingungen dynamische Filamente durch Polymerisation ausbildet. Diese Filamente können sowohl in Netzwerken als auch Bündeln angeordnet werden. Diese Anordnungen bilden die Grundlage für eine Vielfalt von Strukturen zur Realisierung diverser zellulärer Funktionen. Konventionell wurde die Ausprägung solcher Strukturen durch zusätzliche Proteine erklärt, welche Aktin beispielsweise vernetzen oder sogar aktive, dissipative Prozesse durch ATP Hydrolyse ermöglichen. Durch diese Erklärungen prägte sich ein sehr komplexes Bild zellulärer Funktionen heraus. Die dissipative Natur der meisten Prozesse führte dazu, dass meist auf grundlegende physikalische Beschreibungen, welche auf nicht-dissipativen Gleichgewichtszuständen beruhen, verzichtet wurde. Diese Arbeit widmet sich solchen nicht-dissipativen Prozessen und beschreibt deren inhärente Bedeutung auch in aktiven, dissipativen Systemen.
Ein erstes Beispiel beschreibt die Generierung von kontraktilen Kräften in Aktinbündeln durch eine hohe makromolekulare Dichte der Umgebung. Diese hohe Dichte führt zu einem entropischen Effekt, welcher durch Volumenausschluss hochkonzentrierter inerter Polymere Aktinfilamente in Bündel ordnet. Werden diese Strukturen aus ihrem energetischen Minimum ausgelenkt, so entsteht eine rücktreibende Kraft, welche nach Ausschaltung der auslenkenden Kraft zu einer Kontraktion des gesamten Bündels führt. Dieses Bespiel zeigt klar, dass selbst in sehr einfachen Systemen äußerst komplexe Prozesse ablaufen können, welche konventionell mittels dissipativer Umwandlung von chemischer Energie in mechanische Arbeit beschrieben wurden.
Die Komplexität der Eigenschaften von Aktinbündeln nimmt zudem drastisch zu sobald zusätzliche Proteine mit eigenen mechanischen Eigenschaften das System beeinflussen. Zur Untersuchung eines solchen Mehrkomponentensystems wurden Aktinfilamente mittels transienter Vernetzungsproteine gebündelt. Versuche auf unterschiedlichen Zeitskalen zeigten klar differenzierbare mechanische Antworten auf induzierte, aktive Biegedeformationen. Im Falle kurzer Deformationen verhielt sich das System völlig elastisch, während für lange Deformationszeiten deutliche plastische Effekte auftraten. Als Ursprung dieser Plastizität wurde die dynamische Umordnung der Vernetzungsproteine identifiziert.
Jedoch führen nicht nur zusätzliche Proteine zu einer erhöhten Komplexität. Bereits die Anordnung von reinen Aktinbündeln in Netzwerke mittels entropischer Kräfte führt zu einer überraschenden Variabilität von entstehenden Mustern. Im besonderen Fokus dieser Untersuchung stehen Aster ähnliche Muster, welche regelmäßige Netzwerkstrukturen ausbilden und nur in Verbindung mit Aktin assoziierten Proteinen bekannt waren. Störungen der isotropen Ausgangssituation führen zu veränderter Musterbildung, welche die initiale Störung direkt widerspiegeln.
Mit den präsentierten Resultaten leistet die Arbeit einen wichtigen Beitrag zum Verständnis der Dynamik von Aktinbündeln sowie deren Interaktionen.
|
13 |
Field-responsive colloidal assemblies defined by magnetic anisotropySteinbach, Gabi, Schreiber, Michael, Nissen, Dennis, Albrecht, Manfred, Novak, Ekaterina, Sánchez, Pedro A., Kantorovich, Sofia S., Gemming, Sibylle, Erbe, Artur 27 April 2020 (has links)
Particle dispersions provide a promising tool for the engineering of functional materials that exploit self-assembly of complex structures. Dispersion made from magnetic colloidal particles is a great choice; they are biocompatible and remotely controllable among many other advantages. However, their dominating dipolar interaction typically limits structural complexity to linear arrangements. This paper shows how a magnetostatic equilibrium state with noncollinear arrangement of the magnetic moments, as reported for ferromagnetic Janus particles, enables the controlled self-organization of diverse structures in two dimensions via constant and low-frequency external magnetic fields. Branched clusters of staggered chains, compact clusters, linear chains, and dispersed single particles can be formed and interconverted reversibly in a controlled way. The structural diversity is a consequence of both the inhomogeneity and the spatial extension of the magnetization distribution inside the particles. We draw this conclusion from calculations based on a model of spheres with multiple shifted dipoles. The results demonstrate that fundamentally new possibilities for responsive magnetic materials can arise from interactions between particles with a spatially extended, anisotropic magnetization distribution.
|
14 |
Designing Plasmonic Meta-Surfaces via Template-Assisted 1D, 2D, and 3D Colloidal AssemblyProbst, Patrick T. 13 December 2021 (has links)
Atoms change their optical properties drastically when combined into molecules or crystals. This becomes evident when comparing isolated carbon atoms with their solid-state polymorphs graphite and diamond. Plasmonic meta-surfaces adopt this concept to design the optical properties of thin films at will. In analogy to natural materials, the optical response of a meta-surface is dictated by the arrangement and plasmonic coupling (hybridization) of sub-wavelength metallic objects, so-called meta-atoms, rather than by the individual components. Although traditional direct writing approaches offer a high degree of freedom in design of nanostructures, reconfiguration of meta-atoms is usually limited. Especially their spatial rearrangement remains a huge challenge. Postfabrication tunability, however, would be crucial to advance device miniaturization and optical computing, by introducing dynamically tunable optics and optical switches.
This thesis investigates colloidal assembly as a cost-efficient approach to fabricate meta-surfaces on cm²-areas whose optical properties can be tuned by geometrical reconfiguration. Hydrodynamic fields and topographical templates guide the deposition of colloidal nanoparticles with precise orientational and/or positional control. In the course of this work, the level of particle assembly complexity is successively increased to realize 1-, 2-, and 3-dimensional (1D, 2D, 3D) plasmonic assemblies. Strongly correlated with assembly geometry, different aspects of light are controllable. (I) 1D alignment of silver nanowires (AgNWs) produces differential transmission for linear polarization states (linear dichroism). (II) Single particles in a 2D square array interact coherently to produce a sharp, so-called surface lattice resonance (SLR). This effect confines strong electromagnetic fields in the lattice plane, which is promising for plasmonic lasing. (III) 3D chiral, cross-stacked particle chains control the transmission of circular polarization states (circular dichroism, CD).
The unique advantages of colloidal assembly are demonstrated. (I) Spray coating allows rapid deposition of oriented AgNWs over large areas and is compatible with roll-to-roll processing. Employing wrinkle-structured receiver substrates, gradients of continuously varying linear dichroism are feasible in a single step. (II) Capillary assembly is able to realize ~1 nm inter-particle spacing, which is not achievable by conventional top-down lithographical methods. The small spacing enhances inter-particle plasmon coupling and boosts CD in cross-stacked, chiral particle chains, as presented in this thesis. (III) Such hierarchical and restackable, chiral structures make large volumes of superchiral fields accessible for ultrasensitive, enantioselective detection of analytes. This is in vast contrast to stacked nanobars produced via lithography where the most pronounced fields in the inter-layer gap are blocked by the presence of spacing layers.
A central focus of this thesis is the postfabrication reconfiguration of the systems presented. This in-situ tunability is realized by elastic and reversibly stackable templates. (I) Uniaxial, mechanical strain converts the 2D square lattice into a rectangular one. This splits the SLR into two polarization-dependent modes whose resonance position is shifted reversibly when load is applied. (II) The cross-stacked, chiral particle chains are restackable. This allows adjustment of the stacking angle to tune CD magnitude and sign. (III) Reversible compression of this chiral stack induces a bending of the chains to shift the spectral position of CD modes. In a proof of concept, locally varying compression is shown to create a gradient of CD response as important step towards on-chip CD spectroscopy.
Overall, this thesis (I) tests the limits of colloidal assembly by going from single-particle arrays to complex 3D arrangements; (II) explores geometrical reconfiguration of these plasmonic nanostructures to tune pronounced optical effects. The strategies presented herein can be extended to other colloidal particle shapes and materials. Moreover, the concepts of restackable meta-surfaces and local compression for tuning optical response open an intriguing playground and might inspire top-down approaches as well. / Atome ändern ihre optischen Eigenschaften drastisch, wenn sie sich zu Molekülen oder Kristallen vereinigen. Dies wird deutlich, wenn man isolierte Kohlenstoffatome mit ihren Festkörperpolymorphen Graphit und Diamant vergleicht. Plasmonische Meta-Oberflächen übernehmen dieses Konzept, um die optischen Eigenschaften dünner Schichten nach Belieben einzustellen. In Analogie zu natürlichen Materialien wird die optische Antwort einer Meta-Oberfläche durch die Anordnung und plasmonische Kopplung (Hybridisierung) metallischer Mikro- und Nano-Objekte, den sogenannten Meta-Atomen, bestimmt und kann sich stark von den Eigenschaften der Einzelkomponenten unterscheiden. Obwohl traditionelle Direktschreibverfahren ein hohes Maß an Gestaltungsfreiheit in der Nanostrukturierung bieten, ist die Rekonfiguration von Meta-Atomen in der Regel begrenzt. Vor allem ihre räumliche Neuordnung bleibt eine große Herausforderung. Eine Durchstimmbarkeit auch nach der Herstellung zu gewährleisten wäre jedoch entscheidend, um die Miniaturisierung von Geräten und die Realisierung optischer Computer—durch die Einführung dynamisch durchstimmbarer optischer Bauteile und optischer Schalter—voranzutreiben.
Diese Dissertation untersucht kolloidale Assemblierung als kostengünstigen Ansatz zur Herstellung von Meta-Oberflächen im cm²-Maßstab, deren optische Eigenschaften durch geometrische Rekonfiguration durchgestimmt werden können. Hydrodynamische Felder und topographische Template steuern die Ablagerung kolloidaler Nanopartikel mit präziser Orientierungs- und/oder Positionskontrolle. Im Verlauf dieser Arbeit wird die Komplexität der Partikelanordnung sukzessive erhöht, um 1-, 2- und 3-dimensionale (1D, 2D, 3D), plasmonische Anordnungen zu realisieren. Eng verbunden mit der Anordnungsgeometrie können verschiedene Aspekte des Lichts gesteuert werden. (I) Die 1D-Ausrichtung von Silbernanodrähten ruft unterschiedliche Transmission für lineare Polarisationszustände hervor (linearer Dichroismus). (II) Einzelpartikel in einem quadratischen 2D-Kristall wechselwirken kohärent, was eine scharfe, sogenannte Oberflächengitterresonanz (surface lattice resonance) erzeugt. Dieser Effekt konzentriert starke elektromagnetische Felder in der Gitterebene, was ihn für plasmonische Laser interessant macht. (III) 3D-chirale, über Kreuz geschichtete Partikelketten beeinflussen die Transmission zirkularer Polarisationszustände (zirkularer Dichroismus).
Die einzigartigen Vorzüge der kolloidalen Assemblierung werden aufgezeigt. (I) Die Sprühbeschichtung ermöglicht eine rasche Abscheidung orientierter Silbernanodrähte auf großen Flächen und lässt sich mit kontinuierlicher Fertigung (Rolle-zu-Rolle) verbinden. Mit Hilfe faltenstrukturierter Substrate können Gradienten mit kontinuierlich variierendem Lineardichroismus in einem einzigen Schritt erzeugt werden. (II) Partikelanordnung mittels Kapillarkräften ermöglicht Partikelabstände von ~1 nm, was mit herkömmlichen, lithographischen Methoden nicht erreichbar ist. Dieser geringe Abstand verbessert die Plasmonenkopplung zwischen den Partikeln und verstärkt den Zirkulardichroismus in gekreuzten, chiralen Partikelketten, wie in dieser Arbeit vorgestellt wird. (III) Solche hierarchischen und wiederholt stapelbaren, chiralen Strukturen machen große Volumina an superchiralen Feldern für Analytmoleküle zugänglich, was deren ultrasensitive, enantioselektive Detektion ermöglicht. Dies steht in starkem Gegensatz zu gestapelten, lithographisch hergestellten Nanostäbchen, bei denen die stärksten Felder im Zwischenschichtspalt durch die Anwesenheit von Abstandsschichten versperrt bleiben.
Ein zentrales Thema dieser Arbeit ist die Rekonfiguration der vorgestellten Systeme im Anschluss an deren Fertigung. Diese in-situ-Durchstimmbarkeit wird durch elastische und reversibel stapelbare Template realisiert. (I) Mechanische Deformation entlang einer Achse überführt den quadratischen 2D-Kristall in einen rechteckigen. Dadurch wird die Oberflächengitterresonanz in zwei polarisationsabhängige Moden aufgespalten, deren Resonanzposition unter Krafteinwirkung reversibel verschoben wird. (II) Die über Kreuz gestapelten, chiralen Partikelketten sind wiederholt stapelbar. Dies ermöglicht die Anpassung des Stapelwinkels, um die Stärke und das Vorzeichen des Zirkulardichroismus einzustellen. (III) Reversible Kompression dieses chiralen Stapels verursacht ein Verbiegen der Ketten und verschiebt so die spektrale Position der zirkulardichroitischen Moden. In einer Machbarkeitsstudie konnte gezeigt werden, dass lokal variierende Kompression einen Gradienten des Zirkulardichroismus hervorruft. Dies stellt einen wichtigen Schritt in Richtung Ein-Chip-Spektroskopie dar.
Diese Arbeit (I) lotet die Grenzen der kolloidalen Assemblierung aus, indem sie von Einzelpartikel-Anordnungen zu komplexen 3D-Arrangements übergeht; (II) untersucht die geometrische Rekonfiguration dieser plasmonischen Nanostrukturen, um ausgeprägte optische Effekte zu modulieren. Die hier vorgestellten Strategien können auf andere kolloidale Partikelformen und materialien übertragen werden. Darüber hinaus bereiten die Konzepte wiederholt stapelbarer Meta-Oberflächen und der lokalen Kompression zum Einstellen der optischen Eigenschaften eine faszinierende Spielwiese. Auch der Top-Down-Fertigung könnten diese Ansätze als Blaupause dienen.
|
15 |
Influenza virus assemblyHöfer, Chris Tina 02 July 2015 (has links)
Influenza A Viren besitzen ein segmentiertes, einzelsträngiges RNA-Genom, welches in Form viraler Ribonukleoprotein (vRNP)-Komplexe verpackt ist. Während das virale Genom im Zellkern repliziert wird, finden Assemblierung und Knospung reifer Viruspartikel an der apikalen Plasmamembran statt. Für die Virusbildung müssen die einzelnen viralen Komponenten hierher gebracht werden. Während intrinsische apikale Signale der viralen Transmembranproteine bekannt sind, sind der zielgerichtete Transport und der Einbau des viralen Genoms in neuentstehende Virionen noch wenig verstanden. In dieser Arbeit wurden potentielle Mechanismen des vRNP-Transportes untersucht, wie die Fähigkeit der vRNPs mit Lipidmembranen zu assoziieren und die intrinsische subzellulären Lokalisation des viralen Nukleoproteins (NP), eines Hauptbestandteils der vRNPs. Es konnte gezeigt werden, dass vRNPs nicht mit Lipidmembranen assoziieren, was mittels Flotation aufgereinigter vRNPs mit Liposomen unterschiedlicher Zusammensetzung untersucht wurde. Die Ergebnisse deuten jedoch darauf hin, dass das virale M1 in der Lage ist, Bindung von vRNPs an negativ-geladene Lipidmembranen zu vermitteln. Subzelluläre Lokalisation von NP wurde des Weiteren durch Expression fluoreszierender NP-Fusionsproteine und Fluoreszenzphotoaktivierung untersucht. Es konnte gezeigt werden, dass NP allein nicht mit zytoplasmatischen Strukturen assoziiert, stattdessen aber umfangreiche Interaktionen im Zellkern eingeht und mit hoher Affinität mit bestimmten Kerndomänen assoziiert, und zwar den Nukleoli sowie kleinen Kerndomänen, welche häufig in der Nähe von Cajal-Körperchen und PML-Körperchen zu finden waren. Schließlich wurde ein experimenteller Ansatz etabliert, welcher erlaubt, den Transport vRNP-ähnlicher Komplexe mittels Fluoreszenzdetektion aufzuzeichnen und Einzelpartikelverfolgungsanalysen durchzuführen. Unterschiedliche Phasen des vRNP-Transportes konnten beobachtet werden und ein 3-Phasen-Transportmodell wird skizziert. / Influenza A viruses have a segmented single-stranded RNA genome, which is packed in form of viral ribonucleoprotein (vRNP) complexes. While the viral genome is replicated and transcribed in the host cell nucleus, assembly and budding of mature virus particles take place at the apical plasma membrane. Efficient virus formation requires delivery of all viral components to this site. While intrinsic apical targeting signals of the viral transmembrane proteins have been identified, it still remains poorly understood how the viral genome is transported and targeted into progeny virus particles. In this study, potential targeting mechanisms were investigated like the ability of vRNPs to associate with lipid membranes and the intrinsic ability of the viral nucleoprotein (NP) – which is the major protein component of vRNPs – for subcellular targeting. It could be shown that vRNPs are not able to associate with model membranes in vitro, which was demonstrated by flotation of purified vRNPs with liposomes of different lipid compositions. Results indicated, however, that the matrix protein M1 can mediate binding of vRNPs to negatively charged lipid bilayers. Intrinsic subcellular targeting of NP was further investigated by expression of fluorescent NP fusion protein and fluorescence photoactivation, revealing that NP by itself does not target cytoplasmic structures. It was found to interact extensively with the nuclear compartment instead and to target specific nuclear domains with high affinity, in particular nucleoli and small interchromatin domains that frequently localized in close proximity to Cajal bodies and PML bodies. An experimental approach was finally established that allowed monitoring the transport of vRNP-like complexes in living infected cells by fluorescence detection. It was possible to perform single particle tracking and to describe different stages of vRNP transport between the nucleus and the plasma membrane. A model of three-stage transport is suggested.
|
16 |
Einsatz von einzelsträngigen DNS-Templaten zur Erstellung funktioneller DNS-NanostrukturenHenning, Anja 14 May 2013 (has links) (PDF)
Der Grundbaustein des Lebens, die Desoxyribonukleinsäure (DNS), ist aufgrund ihrer spezifischen Basenpaarung ein geeignetes Molekül, um stabile und vielfältige nano- beziehungsweise mikrometergroße Strukturen herzustellen. Diese selbstorganisierten DNS-Strukturen eignen sich als Grundeinheiten für die Ausrichtung anorganischer und organischer Materialien. Für die Synthese solcher DNS-Strukturen werden insbesondere die Kachel-basierte Assemblierung (engl. tile-based assembly, im Folgenden als Tile-basierte Assemblierung bezeichnet) oder die DNS-Origami-Methode verwendet. Die Tile-basierte Assemblierung beinhaltet die Verbindung einzelner DNS-Bausteine, den sogenannten Kacheln (engl. tiles), zu komplexeren DNS-Strukturen. Hingegen entspricht die DNS-Origami-Methode der Faltung eines langen einzelsträngigen DNS-Moleküls, dem sogenannten scaffold, anhand von hunderten kurzen Oligonukleotiden (Heftklammer-Oligomeren, engl. staple strands) hin zu einer entsprechenden Form.
Hinsichtlich einer zukünftigen Erstellung von DNS-basierten, nanoelektronischen Systemen war das Ziel dieser Arbeit einheitliche zwei- (2D) und dreidimensionale (3D) DNS-Nanostrukturen herzustellen, Methoden für deren kontrollierte Vernetzung zu entwickeln sowie deren chemische Funktionalisierung mit Nanomaterialien und einer beispielhaften Integration in lithographisch gefertigten Mikrokontaktstrukturen durchzuführen. Hierfür war es notwendig, einen weiten Bogen zu spannen, welcher einerseits verschiedene Konstruktionsprinzipien der DNS-Nanotechnologie vorteilhaft miteinander vereint und der andererseits die weitreichenden Möglichkeiten der chemischen Funktionalisierung der sogenannten DNS-Templatstrukturen auslotet.
Konkret wurden zur Erstellung von einheitlichen DNS-Strukturen Assemblierungskonzepte verwendet bzw. entwickelt, welche auf die Ausrichtung einzelner kurzer Oligonukleotide anhand eines langen einzelsträngigen DNS-Templates beruhen. Im ersten Teil der Arbeit ist anhand eines selbstkomplementären Einzelstranges aufgezeigt, wie sich prinzipiell die Wachstumsrichtung einer Tile-basierten Struktur durch die Verwendung eines einzelsträngigen DNS-Templates beeinflussen lässt. Bei diesem Ansatz bildet sich entlang des DNS-Templates eine 2D-Gitterstruktur aus einheitlichen und abschnittsweise selbstkomplementären hexagonalen oder tetragonalen Oligonukleotideinheiten aus. Diese gerichtete Selbstassemblierung führt schließlich zum Aufrollen und Zusammenschluss der 2D-DNS-Struktur zu einer tubulären Struktur. Die Größe und Geometrie der Oligonukleotideinheiten bestimmen dabei maßgeblich den Durchmesser dieser DNS-Nanoröhren. Zur Erklärung von experimentellen Beobachtungen wurde ein Modell entwickelt, welches die Templat-gestützte Assemblierung theoretisch beschreibt. Die erstellten, strukturellen Anforderungen genügenden Nanoröhren eignen sich für eine gleichmäßige Funktionalisierung mit Nanomaterialien, wie anhand der Ausrichtung von Gold-Nanopartikeln gezeigt wurde.
In einem weiteren Teil der Arbeit wurde eine ca. 400 nm lange DNS-Nanoröhre anhand der DNS-Origami-Methode erstellt. Diese Nanoröhre diente als Modellsystem zur Untersuchung der Integration von tubulären DNS-Strukturen in Mikrokontaktstrukturen mittels der Dielektrophorese. Eine positive dielektrophoretische Antwort der 3D-DNS-Strukturen konnte im MHz-Bereich festgestellt werden. Des Weiteren wurde für mit Gold-Nanopartikeln funktionalisierte DNS-Nanoröhren eine verstärkte dielektrophoretisch Antwort beobachtet. Neben der Manipulation bzw. Ausrichtung von DNS-Nanostrukturen wurden Konzepte entwickelt, welche zusätzlich zum Aufbau komplexer DNS-Netzwerke innerhalb einer Mikrokontaktstruktur erforderlich sind. Konkret konnte eine Verbindung der 3D-Nanoröhren (i) untereinander über eine 200 nm lange kreuzartige DNS-Zwischenstruktur und (ii) endständig mit einer Goldoberfläche ermöglicht werden.
Der dritte Teil dieser Arbeit befasste sich mit der Entwicklung einer modularen 2D-DNS-Struktur, welche unter anderem für eine vergleichbare Untersuchung zur Immobilisierung von Nanomaterialien auf DNS-Strukturen dienen kann. Anhand der DNS-Origami-Methode wurde eine spezifische DNS-Gerüststruktur entworfen, welche die Ausstattung mit einer funktionalisierbaren Tile-basierten Einheit erlaubt. Um die Modularität der DNS-Gerüststruktur zu verdeutlichen, wurden zwei unterschiedliche, drei-beinige Tiles entworfen und anhand eines Ein- oder Zwei-Schritt-Verfahrens in die DNS-Gerüststruktur integriert. Die Anbindung eines Gold-Nanopartikels an jedes Bein des eingebundenen Tiles demonstriert die spezifische Funktionialisierbarkeit dieses Modellsystems. Zudem wurden Methoden, welche zur Aufreinigung der funktionalisierten DNS-Gerüststrukturen dienen, wie auch Effekte der Vernetzung von DNS-Origami-Strukturen anhand unspezifischer Wechselwirkungen untersucht.
Die Ermittlung der Struktureigenschaften beziehungsweise der Assemblierungsqualität der in dieser Arbeit gezeigten DNS-Strukturen erfolgte mittels elektrophoretischer und bildgebender Untersuchungsverfahren (Rasterkraftmikroskopie, Transmissionselektronenmikroskopie, Rasterelektronenmikroskopie).
|
17 |
Assemblierung der Cytochrom c Oxidase: Molekulare und biochemische Charakterisierung des mitochondrialen Sco1p aus Saccharomyces cerevisiae und homologer ProteineLode, Anja 10 September 2001 (has links) (PDF)
Diese Arbeit beschäftigt sich mit dem mitochondrialen Sco1-Protein der Hefe Saccharomyces cerevisiae sowie mit weiteren Vertretern der Sco-Proteinfamilie. Sco1p ist essenziell für die Assemblierung der Cytochrom c Oxidase (COX), dem terminalen Komplex der Atmungskette. Aufgrund von genetischen Daten wurde angenommen, dass es an der Insertion von Cu-Ionen in den COX-Komplex beteiligt ist. Dabei existieren zwei unterschiedliche Vorstellungen über seine Wirkweise: Einerseits könnte Sco1p als Cu-Chaperon selbst Cu-Ionen binden und anschließend auf die Cu-tragenden COX-Untereinheiten Cox1p und/oder Cox2p übertragen. Andererseits könnte es als Disulfidreduktase die in die Cu-Bindung involvierten Cysteinreste von Cox2p reduzieren und somit die Voraussetzung für eine Cu-Anheftung an Cox2p schaffen. In beiden Fällen wird den unter den Sco-Proteinen konservierten Aminosäuren Cystein(148), Cystein(152) und Histidin(239) eine Schlüsselrolle zugedacht. Es wurde gezeigt, dass diese Aminosäuren tatsächlich essenziell für die Funktion von Sco1p sind. Die Daten dieser Arbeit sprechen dafür, dass Sco1p als Cu-Chaperon fungiert: Sco1p zeigt keine Aktivität als Disulfidreduktase. Außerdem interagiert Sco1p mit Cox17p - dem Protein, das Cu-Ionen in die Mitochondrien importiert - und geht mit Cox2p eine Wechselwirkung ein. Im Rahmen der Interaktionsanalysen wurde weiterhin gezeigt, dass Sco1p homomere Komplexe ausbildet. Ein weiterer Schwerpunkt dieser Arbeit lag in Untersuchungen zum homologen Sco2p aus Saccharomyces cerevisiae, das im Gegensatz zu Sco1p nicht essenziell für eine funkionsfähige COX ist. Trotz seiner großen Ähnlichkeit ist Sco2p nicht in der Lage, die Funktion von Sco1p zu erfüllen. Im Rahmen dieser Arbeit konnt aber demonstriert werden, dass Sco2p zumindest teilweise Sco1p ersetzen kann. Somit kann für beide Proteine angenommen werden, dass sie überlappende Funktionen besitzen. Übereinstimmend wurde nachgewiesen, dass Sco2p - wie Sco1p - in der Lage ist, mit Cox17p und mit Cox2p zu interagieren und außerdem heteromere Komplexe mit Sco1p formiert. Es wurde ein Modell zur Wirkweise von Sco1p und Sco2p entwickelt.
|
18 |
Einsatz von einzelsträngigen DNS-Templaten zur Erstellung funktioneller DNS-NanostrukturenHenning, Anja 21 February 2013 (has links)
Der Grundbaustein des Lebens, die Desoxyribonukleinsäure (DNS), ist aufgrund ihrer spezifischen Basenpaarung ein geeignetes Molekül, um stabile und vielfältige nano- beziehungsweise mikrometergroße Strukturen herzustellen. Diese selbstorganisierten DNS-Strukturen eignen sich als Grundeinheiten für die Ausrichtung anorganischer und organischer Materialien. Für die Synthese solcher DNS-Strukturen werden insbesondere die Kachel-basierte Assemblierung (engl. tile-based assembly, im Folgenden als Tile-basierte Assemblierung bezeichnet) oder die DNS-Origami-Methode verwendet. Die Tile-basierte Assemblierung beinhaltet die Verbindung einzelner DNS-Bausteine, den sogenannten Kacheln (engl. tiles), zu komplexeren DNS-Strukturen. Hingegen entspricht die DNS-Origami-Methode der Faltung eines langen einzelsträngigen DNS-Moleküls, dem sogenannten scaffold, anhand von hunderten kurzen Oligonukleotiden (Heftklammer-Oligomeren, engl. staple strands) hin zu einer entsprechenden Form.
Hinsichtlich einer zukünftigen Erstellung von DNS-basierten, nanoelektronischen Systemen war das Ziel dieser Arbeit einheitliche zwei- (2D) und dreidimensionale (3D) DNS-Nanostrukturen herzustellen, Methoden für deren kontrollierte Vernetzung zu entwickeln sowie deren chemische Funktionalisierung mit Nanomaterialien und einer beispielhaften Integration in lithographisch gefertigten Mikrokontaktstrukturen durchzuführen. Hierfür war es notwendig, einen weiten Bogen zu spannen, welcher einerseits verschiedene Konstruktionsprinzipien der DNS-Nanotechnologie vorteilhaft miteinander vereint und der andererseits die weitreichenden Möglichkeiten der chemischen Funktionalisierung der sogenannten DNS-Templatstrukturen auslotet.
Konkret wurden zur Erstellung von einheitlichen DNS-Strukturen Assemblierungskonzepte verwendet bzw. entwickelt, welche auf die Ausrichtung einzelner kurzer Oligonukleotide anhand eines langen einzelsträngigen DNS-Templates beruhen. Im ersten Teil der Arbeit ist anhand eines selbstkomplementären Einzelstranges aufgezeigt, wie sich prinzipiell die Wachstumsrichtung einer Tile-basierten Struktur durch die Verwendung eines einzelsträngigen DNS-Templates beeinflussen lässt. Bei diesem Ansatz bildet sich entlang des DNS-Templates eine 2D-Gitterstruktur aus einheitlichen und abschnittsweise selbstkomplementären hexagonalen oder tetragonalen Oligonukleotideinheiten aus. Diese gerichtete Selbstassemblierung führt schließlich zum Aufrollen und Zusammenschluss der 2D-DNS-Struktur zu einer tubulären Struktur. Die Größe und Geometrie der Oligonukleotideinheiten bestimmen dabei maßgeblich den Durchmesser dieser DNS-Nanoröhren. Zur Erklärung von experimentellen Beobachtungen wurde ein Modell entwickelt, welches die Templat-gestützte Assemblierung theoretisch beschreibt. Die erstellten, strukturellen Anforderungen genügenden Nanoröhren eignen sich für eine gleichmäßige Funktionalisierung mit Nanomaterialien, wie anhand der Ausrichtung von Gold-Nanopartikeln gezeigt wurde.
In einem weiteren Teil der Arbeit wurde eine ca. 400 nm lange DNS-Nanoröhre anhand der DNS-Origami-Methode erstellt. Diese Nanoröhre diente als Modellsystem zur Untersuchung der Integration von tubulären DNS-Strukturen in Mikrokontaktstrukturen mittels der Dielektrophorese. Eine positive dielektrophoretische Antwort der 3D-DNS-Strukturen konnte im MHz-Bereich festgestellt werden. Des Weiteren wurde für mit Gold-Nanopartikeln funktionalisierte DNS-Nanoröhren eine verstärkte dielektrophoretisch Antwort beobachtet. Neben der Manipulation bzw. Ausrichtung von DNS-Nanostrukturen wurden Konzepte entwickelt, welche zusätzlich zum Aufbau komplexer DNS-Netzwerke innerhalb einer Mikrokontaktstruktur erforderlich sind. Konkret konnte eine Verbindung der 3D-Nanoröhren (i) untereinander über eine 200 nm lange kreuzartige DNS-Zwischenstruktur und (ii) endständig mit einer Goldoberfläche ermöglicht werden.
Der dritte Teil dieser Arbeit befasste sich mit der Entwicklung einer modularen 2D-DNS-Struktur, welche unter anderem für eine vergleichbare Untersuchung zur Immobilisierung von Nanomaterialien auf DNS-Strukturen dienen kann. Anhand der DNS-Origami-Methode wurde eine spezifische DNS-Gerüststruktur entworfen, welche die Ausstattung mit einer funktionalisierbaren Tile-basierten Einheit erlaubt. Um die Modularität der DNS-Gerüststruktur zu verdeutlichen, wurden zwei unterschiedliche, drei-beinige Tiles entworfen und anhand eines Ein- oder Zwei-Schritt-Verfahrens in die DNS-Gerüststruktur integriert. Die Anbindung eines Gold-Nanopartikels an jedes Bein des eingebundenen Tiles demonstriert die spezifische Funktionialisierbarkeit dieses Modellsystems. Zudem wurden Methoden, welche zur Aufreinigung der funktionalisierten DNS-Gerüststrukturen dienen, wie auch Effekte der Vernetzung von DNS-Origami-Strukturen anhand unspezifischer Wechselwirkungen untersucht.
Die Ermittlung der Struktureigenschaften beziehungsweise der Assemblierungsqualität der in dieser Arbeit gezeigten DNS-Strukturen erfolgte mittels elektrophoretischer und bildgebender Untersuchungsverfahren (Rasterkraftmikroskopie, Transmissionselektronenmikroskopie, Rasterelektronenmikroskopie).
|
19 |
The mapping task and its various applications in next-generation sequencingOtto, Christian 27 February 2015 (has links)
The aim of this thesis is the development and benchmarking of
computational methods for the analysis of high-throughput data from
tiling arrays and next-generation sequencing. Tiling arrays have been
a mainstay of genome-wide transcriptomics, e.g., in the identification
of functional elements in the human genome. Due to limitations of
existing methods for the data analysis of this data, a novel
statistical approach is presented that identifies expressed segments
as significant differences from the background distribution and thus
avoids dataset-specific parameters. This method detects differentially
expressed segments in biological data with significantly lower false
discovery rates and equivalent sensitivities compared to commonly used
methods. In addition, it is also clearly superior in the recovery of
exon-intron structures. Moreover, the search for local accumulations
of expressed segments in tiling array data has led to the
identification of very large expressed regions that may constitute a
new class of macroRNAs.
This thesis proceeds with next-generation sequencing for which various
protocols have been devised to study genomic, transcriptomic, and
epigenomic features. One of the first crucial steps in most NGS data
analyses is the mapping of sequencing reads to a reference
genome. This work introduces algorithmic methods to solve the mapping
tasks for three major NGS protocols: DNA-seq, RNA-seq, and
MethylC-seq. All methods have been thoroughly benchmarked and
integrated into the segemehl mapping suite.
First, mapping of DNA-seq data is facilitated by the core mapping
algorithm of segemehl. Since the initial publication, it has been
continuously updated and expanded. Here, extensive and reproducible
benchmarks are presented that compare segemehl to state-of-the-art
read aligners on various data sets. The results indicate that it is
not only more sensitive in finding the optimal alignment with respect
to the unit edit distance but also very specific compared to most
commonly used alternative read mappers. These advantages are
observable for both real and simulated reads, are largely independent
of the read length and sequencing technology, but come at the cost of
higher running time and memory consumption.
Second, the split-read extension of segemehl, presented by Hoffmann,
enables the mapping of RNA-seq data, a computationally more difficult
form of the mapping task due to the occurrence of splicing. Here, the
novel tool lack is presented, which aims to recover missed RNA-seq
read alignments using de novo splice junction information. It
performs very well in benchmarks and may thus be a beneficial
extension to RNA-seq analysis pipelines.
Third, a novel method is introduced that facilitates the mapping of
bisulfite-treated sequencing data. This protocol is considered the
gold standard in genome-wide studies of DNA methylation, one of the
major epigenetic modifications in animals and plants. The treatment of
DNA with sodium bisulfite selectively converts unmethylated cytosines
to uracils, while methylated ones remain unchanged. The bisulfite
extension developed here performs seed searches on a collapsed
alphabet followed by bisulfite-sensitive dynamic programming
alignments. Thus, it is insensitive to bisulfite-related mismatches
and does not rely on post-processing, in contrast to other methods. In
comparison to state-of-the-art tools, this method achieves
significantly higher sensitivities and performs time-competitive in
mapping millions of sequencing reads to vertebrate
genomes. Remarkably, the increase in sensitivity does not come at the
cost of decreased specificity and thus may finally result in a better
performance in calling the methylation rate.
Lastly, the potential of mapping strategies for de novo genome
assemblies is demonstrated with the introduction of a new guided
assembly procedure. It incorporates mapping as major component and
uses the additional information (e.g., annotation) as guide. With this
method, the complete mitochondrial genome of Eulimnogammarus verrucosus has been
successfully assembled even though the sequencing library has been
heavily dominated by nuclear DNA.
In summary, this thesis introduces algorithmic methods that
significantly improve the analysis of tiling array, DNA-seq, RNA-seq,
and MethylC-seq data, and proposes standards for benchmarking NGS read
aligners. Moreover, it presents a new guided assembly procedure that
has been successfully applied in the de novo assembly of a
crustacean mitogenome. / Diese Arbeit befasst sich mit der Entwicklung und dem Benchmarken von
Verfahren zur Analyse von Daten aus Hochdurchsatz-Technologien, wie
Tiling Arrays oder Hochdurchsatz-Sequenzierung. Tiling Arrays bildeten
lange Zeit die Grundlage für die genomweite Untersuchung des
Transkriptoms und kamen beispielsweise bei der Identifizierung
funktioneller Elemente im menschlichen Genom zum Einsatz. In dieser
Arbeit wird ein neues statistisches Verfahren zur Auswertung von
Tiling Array-Daten vorgestellt. Darin werden Segmente als exprimiert
klassifiziert, wenn sich deren Signale signifikant von der
Hintergrundverteilung unterscheiden. Dadurch werden keine auf den
Datensatz abgestimmten Parameterwerte benötigt. Die hier
vorgestellte Methode erkennt differentiell exprimierte Segmente in
biologischen Daten bei gleicher Sensitivität mit geringerer
Falsch-Positiv-Rate im Vergleich zu den derzeit hauptsächlich
eingesetzten Verfahren. Zudem ist die Methode bei der Erkennung von
Exon-Intron Grenzen präziser. Die Suche nach Anhäufungen
exprimierter Segmente hat darüber hinaus zur Entdeckung von sehr
langen Regionen geführt, welche möglicherweise eine neue
Klasse von macroRNAs darstellen.
Nach dem Exkurs zu Tiling Arrays konzentriert sich diese Arbeit nun
auf die Hochdurchsatz-Sequenzierung, für die bereits verschiedene
Sequenzierungsprotokolle zur Untersuchungen des Genoms, Transkriptoms
und Epigenoms etabliert sind. Einer der ersten und entscheidenden
Schritte in der Analyse von Sequenzierungsdaten stellt in den meisten
Fällen das Mappen dar, bei dem kurze Sequenzen (Reads) auf ein
großes Referenzgenom aligniert werden. Die vorliegende Arbeit
stellt algorithmische Methoden vor, welche das Mapping-Problem für
drei wichtige Sequenzierungsprotokolle (DNA-Seq, RNA-Seq und
MethylC-Seq) lösen. Alle Methoden wurden ausführlichen
Benchmarks unterzogen und sind in der segemehl-Suite integriert.
Als Erstes wird hier der Kern-Algorithmus von segemehl vorgestellt,
welcher das Mappen von DNA-Sequenzierungsdaten ermöglicht. Seit
der ersten Veröffentlichung wurde dieser kontinuierlich optimiert
und erweitert. In dieser Arbeit werden umfangreiche und auf
Reproduzierbarkeit bedachte Benchmarks präsentiert, in denen
segemehl auf zahlreichen Datensätzen mit bekannten
Mapping-Programmen verglichen wird. Die Ergebnisse zeigen, dass
segemehl nicht nur sensitiver im Auffinden von optimalen Alignments
bezüglich der Editierdistanz sondern auch sehr spezifisch im
Vergleich zu anderen Methoden ist. Diese Vorteile sind in realen und
simulierten Daten unabhängig von der Sequenzierungstechnologie
oder der Länge der Reads erkennbar, gehen aber zu Lasten einer
längeren Laufzeit und eines höheren Speicherverbrauchs.
Als Zweites wird das Mappen von RNA-Sequenzierungsdaten untersucht,
welches bereits von der Split-Read-Erweiterung von segemehl
unterstützt wird. Aufgrund von Spleißen ist diese Form des
Mapping-Problems rechnerisch aufwendiger. In dieser Arbeit wird das
neue Programm lack vorgestellt, welches darauf abzielt, fehlende
Read-Alignments mit Hilfe von de novo Spleiß-Information zu
finden. Es erzielt hervorragende Ergebnisse und stellt somit eine
sinnvolle Ergänzung zu Analyse-Pipelines für
RNA-Sequenzierungsdaten dar.
Als Drittes wird eine neue Methode zum Mappen von Bisulfit-behandelte
Sequenzierungsdaten vorgestellt. Dieses Protokoll gilt als
Goldstandard in der genomweiten Untersuchung der DNA-Methylierung,
einer der wichtigsten epigenetischen Modifikationen in Tieren und
Pflanzen. Dabei wird die DNA vor der Sequenzierung mit Natriumbisulfit
behandelt, welches selektiv nicht methylierte Cytosine zu Uracilen
konvertiert, während Methylcytosine davon unberührt
bleiben. Die hier vorgestellte Bisulfit-Erweiterung führt die
Seed-Suche auf einem reduziertem Alphabet durch und verifiziert die
erhaltenen Treffer mit einem auf dynamischer Programmierung
basierenden Bisulfit-sensitiven Alignment-Algorithmus. Das verwendete
Verfahren ist somit unempfindlich gegenüber
Bisulfit-Konvertierungen und erfordert im Gegensatz zu anderen
Verfahren keine weitere Nachverarbeitung. Im Vergleich zu aktuell
eingesetzten Programmen ist die Methode sensitiver und benötigt
eine vergleichbare Laufzeit beim Mappen von Millionen von Reads auf
große Genome. Bemerkenswerterweise wird die erhöhte
Sensitivität bei gleichbleibend guter Spezifizität
erreicht. Dadurch könnte diese Methode somit auch bessere
Ergebnisse bei der präzisen Bestimmung der Methylierungsraten
erreichen.
Schließlich wird noch das Potential von Mapping-Strategien für
Assemblierungen mit der Einführung eines neuen,
Kristallisation-genanntes Verfahren zur unterstützten
Assemblierung aufgezeigt. Es enthält Mapping als Hauptbestandteil
und nutzt Zusatzinformation (z.B. Annotationen) als
Unterstützung. Dieses Verfahren ermöglichte die erfolgreiche
Assemblierung des kompletten mitochondrialen Genoms von Eulimnogammarus verrucosus trotz
einer vorwiegend aus nukleärer DNA bestehenden genomischen
Bibliothek.
Zusammenfassend stellt diese Arbeit algorithmische Methoden vor,
welche die Analysen von Tiling Array, DNA-Seq, RNA-Seq und MethylC-Seq
Daten signifikant verbessern. Es werden zudem Standards für den
Vergleich von Programmen zum Mappen von Daten der
Hochdurchsatz-Sequenzierung vorgeschlagen. Darüber hinaus wird ein
neues Verfahren zur unterstützten Genom-Assemblierung vorgestellt,
welches erfolgreich bei der de novo-Assemblierung eines
mitochondrialen Krustentier-Genoms eingesetzt wurde.
|
20 |
Die Funktion LHC-ähnlicher Proteine in der Assemblierung der Photosysteme und der Regulation der ChlorophyllbiosyntheseHey, Daniel 15 May 2019 (has links)
Die pflanzliche Light-harvesting complex-Proteinfamilie besteht aus Proteinen mit vielfältigen Funktionen. Dabei ist die Funktion der Light-harvesting-like 3-Proteine (LIL3) sowie der One-helix-Proteine (OHPs) weitestgehend unbekannt. Im Rahmen dieser Arbeit wurde gezeigt, dass LIL3 nicht nur mit der Geranylgeranyl-Reduktase (CHLP), sondern auch mit der Protochlorophyllid-Oxidoreduktase (POR) interagiert. Sowohl CHLP als auch POR werden über die Interaktion zu LIL3 an die Thylakoidmembran gebunden und dadurch stabilisiert. Beide Enzyme liefern die direkten Vorstufen für den von der Chlorophyll-Synthase (CHLG) katalysierten finalen Chlorophyll-Syntheseschritt. Neben der Bestätigung der bereits früher gezeigten Chlorophyllbindung von LIL3 konnte eine Affinität zu den späten Intermediaten der Chlorophyllbiosynthese Proto IX, MgP, MgPMME und Pchlid nachgewiesen werden. Die größte Affinität bestand dabei gegenüber dem Substrat von POR, Pchlid. Basierend auf diesen Erkenntnissen wird LIL3 als Regulator der späten Chlorophyllbiosynthese-Schritte vorgeschlagen: LIL3 transportiert Substrate zwischen den Enzymen und ermöglicht durch die Bindung von CHLP und POR die Synthese der Chlorophyll-Edukte in räumlicher Nähe. Dadurch wird die Versorgung von CHLG mit dessen Edukten favorisiert. Beide OHP-Varianten (OHP1/2) bilden ausschließlich Heterodimere und binden Chlorophyll sowie Carotinoide im Verhältnis 3:1. Die Pigmentbindung basiert auf den konservierten Aminosäuren im Chlorophyllbindemotiv. An das OHP1-OHP2-Dimer bindet der PSII-Assemblierungsfaktor HCF244 und wird dadurch an der Membran verankert. HCF244 stabilisiert das OHP-Heterodimer und beide OHPs stabilisieren sich gegenseitig. Der heterotrimere OHP1-OHP2-HCF244-Komplex ist für die D1-Synthese wesentlich. Es wird vermutet, dass die OHPs an der co-translationalen Beladung von (p)D1 mit Pigmenten beteiligt sind sowie frühe Assemblierungsintermediate von PSII vor überschüssiger Anregungsenergie schützen. / The plant light-harvesting complex protein family comprises different members with a variety of functions. However, the function of the light-harvesting-like 3 proteins (LIL3) as well as the one-helix proteins (OHPs) is largely unknown. In this thesis, an interaction of LIL3 not only with geranylgeranyl-reductase (CHLP), but also with protochlorophyllide-oxidoreductase (POR) could be established. LIL3 tethers CHLP and POR to the thylakoid membrane, thereby conferring stability to both enzymes. Both CHLP and POR are synthesizing the direct chlorophyll precursors which are combined to chlorophyll by the subsequent chlorophyll synthase (CHLG). In addition to the chlorophyll binding ability of LIL3 reported earlier, an affinity of LIL3 towards the chlorophyll biosynthesis intermediates Proto IX, MgP, MgPMME, and Pchlide could be shown. Interestingly, the highest affinity of LIL3 was exerted towards Pchlide which is the substrate of POR. Therefore, LIL3 is postulated to shuffle the intermediates between enzymes and brings CHLP and POR in close proximity, which may help to supply CHLG with its substrates. Regarding the function of the OHPs an exclusive heterodimer formation of both the OHP1 and OHP2 variants could be shown. The OHP1-OHP2-heterodimer is able to bind chlorophyll and carotenoids in an approximate 3:1 ratio and pigment binding depends on dimer formation as well as the presence of the conserved amino acids in the chlorophyll binding motif. The PSII-assembly factor HCF244 is anchored to the thylakoid membrane by binding to both OHPs, thereby stabilizing the OHP-heterodimer. The heterotrimeric OHP1-OHP2-HCF244-complex is essential for D1 biosynthesis, although the exact molecular function of HCF244 is still unknown. It is suggested that the OHP-dimer is responsible for co-translational loading of (p)D1 with pigments as well as photoprotection of early PSII assembly intermediates.
|
Page generated in 0.1 seconds