• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Information Flow and Local Observables in Many Body Localized Systems / Informationsflöden och lokala observabler i mångpartikellokaliserade system

Niemi, Daniel January 2022 (has links)
Disordered quantum many-body systems exhibiting the many-body localization (MBL) phenomenon evade the fate of thermalization due to the existence of an extensively large set of quasi-local integrals of motion (l-bits). Due to the size of the Hilbert space of many-body systems, it is hard to compute the time evolution of many-body systems generally, which hinders our understanding of the MBL phenomenon. Recently it has been proposed in Ref. [1] to time evolve local density matrices of lattice system with short-range interactions using the Petz recovery map. By time evolving local density matrices, information encoded in long-range entanglement that is irrelevant to the time-evolution of local observables is discarded. This method is promising for MBL-systems, primarily because it can be implemented to conserve local constants of the motion. For the case of a MBL system, this means that the l-bits can be (approximately) conserved. This thesis employs the Petz recovery map to time evolve local density matrices of localized 1D lattice systems, modeled by the Aubry-André Hamiltonian. The accuracy of the method is evaluated and the results are used to study the flow of information between subsystems. It is found that the method can accurately time evolve localized density matrices for an Anderson localized system to arbitrary times. For interacting systems, it is shown that the method is accurate for long time if the system is sufficiently localized. Furthermore, the solutions for the local density matrices exhibit the information spread behavior that is predicted by the l-bit theory of the many-body localized phase: both the logarithmic ”light” cone of entanglement and the dephasing dynamics are observed. This work shows that time evolution of local density matrices is a promising method in the pursuit of a better understanding of the nature of localized systems. / I oordnade kvantmekansika mångpartikelsystem förekommer en lokaliserad fas (MBL). System i denna fas undkommer termalisering då det existerar ett extensivt antal kvasi-lokala rörelsekonstanter (l-bitar). Som en följd av Hilbert-rummets storlek för mångpartikelsystem är det svårt att tidsutveckla mångpartikeltillstånd i allmänhet, vilket gör det svårt att undersöka MBL-fenomenet. Det har nyligen föreslagits i Ref. [1] att tidsutveckla lokala täthetsmatriser för växelverkande endimensionella gittersystem med hjälp av Petzs återställningsfunktion. Genom att tidsutveckla lokala täthetsmatriser förkastas information som inte är relevant för lokala observabler. Metoden är lovande för MBL-system då den kan implementeras så att lokala rörelsekonstanter konserveras. Detta innebär för MBL-system att l-bitarna kan konserveras approximativt. I detta arbete används Petzs återställningsfunktion för att tidsutveckla lokala täthetsmatriser i lokaliserade endimensionella gittersystem. Metodens nogrannhet utvärderas och de resulterande tidsserierna används för att studera informationsspridning mellan delsystem. Arbetet visar att Andersonlokaliserade system kan tidsutvecklas med god nogrannhet till godtyckligt långa tider. Vidare visas att metoden nogrannt kan tidsutveckla MBL-system till långa tider, givet att lokaliseringslängden är kort nog. Slutligen används metoden för att studera informationsflödet mellan delsystem, och resultaten återskapar det beteende som väntas från den fenomenologiska l-bitteorin: informationen sprids logaritmiskt över tid och avfasningsdynamik observeras. Arbetet visar att den föreslagna metoden är lovande i jakten på en utökad förståelse av MBL-system.
2

Princípios de grandes desvios: para o método da entropia penalizada na teoria de Aubry-Mather e para cadeias de Markov a estado contínuo

Mohr, Joana January 2008 (has links)
Este trabalho será dividido em dois capítulos. Em ambos exibiremos a função de desvio e um princípio de grandes desvios para uma sequência de medidas que convergem, para uma medida minimizante no primeiro problema e para uma medida maximizante no segundo. O primeiro capítulo trata de aspectos da teoria de Aubry-Mather. Para um Lagrangiano L(x; v) : TN £ RN → R, satisfazendo algumas hipóteses naturais, e sob hipótese de genericidade, estamos interessados em mostrar um princípio de grandes desvios para uma sequência de medidas que convergem para a medida de Mather. D. Gomes e E. Valdinoci mostraram, para ε; h fixados, a existência de uma medida absolutamente contínua με; h que minimiza o problema de A-M discreto com entropia. Também analisaremos o problema discreto de Aubry-Mather, onde introduziremos o conceito de sub-ação e mostraremos, sob hipótese do Lagrangiano ser genérico, a unicidade de um certo tipo de sub-ação que chamaremos de calibradas. E finalmente mostraremos a existência de um outro tipo de sub-ação ditas separantes. / This work will be divided in two chapters. In both cases we present the rate function and a large deviation principle for a sequence of measures converging, to a minimizing measure in the first problem and to a maximizing measure in the second one. In the first chapter the setting will be the Aubry-Mather theory. For a Lagrangian L(x; v) : TN £RN → R, satisfying some natural hypothesis, and for a generic Lagrangian (it is known that in this case the Mather measure μ is unique and the support of μ is the Aubry set), we will show a large deviation principle for a sequence of measures that converge to the Mather measure. It follows from a result by D. Gomes and E. Valdinoci that, for ε; h fixed, there exists an absolutely continuous measure με; h that minimize the entropy penalized A-M problem. Also we will analyze the discrete A-M problem, where we introduce the concept of subaction and we will show, under the hypothesis of generic Lagrangian, the uniqueness of a kind of subaction, that we will call calibrated. And finally we will show the existence of another kind of subactions, a separating subaction.
3

Princípios de grandes desvios: para o método da entropia penalizada na teoria de Aubry-Mather e para cadeias de Markov a estado contínuo

Mohr, Joana January 2008 (has links)
Este trabalho será dividido em dois capítulos. Em ambos exibiremos a função de desvio e um princípio de grandes desvios para uma sequência de medidas que convergem, para uma medida minimizante no primeiro problema e para uma medida maximizante no segundo. O primeiro capítulo trata de aspectos da teoria de Aubry-Mather. Para um Lagrangiano L(x; v) : TN £ RN → R, satisfazendo algumas hipóteses naturais, e sob hipótese de genericidade, estamos interessados em mostrar um princípio de grandes desvios para uma sequência de medidas que convergem para a medida de Mather. D. Gomes e E. Valdinoci mostraram, para ε; h fixados, a existência de uma medida absolutamente contínua με; h que minimiza o problema de A-M discreto com entropia. Também analisaremos o problema discreto de Aubry-Mather, onde introduziremos o conceito de sub-ação e mostraremos, sob hipótese do Lagrangiano ser genérico, a unicidade de um certo tipo de sub-ação que chamaremos de calibradas. E finalmente mostraremos a existência de um outro tipo de sub-ação ditas separantes. / This work will be divided in two chapters. In both cases we present the rate function and a large deviation principle for a sequence of measures converging, to a minimizing measure in the first problem and to a maximizing measure in the second one. In the first chapter the setting will be the Aubry-Mather theory. For a Lagrangian L(x; v) : TN £RN → R, satisfying some natural hypothesis, and for a generic Lagrangian (it is known that in this case the Mather measure μ is unique and the support of μ is the Aubry set), we will show a large deviation principle for a sequence of measures that converge to the Mather measure. It follows from a result by D. Gomes and E. Valdinoci that, for ε; h fixed, there exists an absolutely continuous measure με; h that minimize the entropy penalized A-M problem. Also we will analyze the discrete A-M problem, where we introduce the concept of subaction and we will show, under the hypothesis of generic Lagrangian, the uniqueness of a kind of subaction, that we will call calibrated. And finally we will show the existence of another kind of subactions, a separating subaction.
4

Princípios de grandes desvios: para o método da entropia penalizada na teoria de Aubry-Mather e para cadeias de Markov a estado contínuo

Mohr, Joana January 2008 (has links)
Este trabalho será dividido em dois capítulos. Em ambos exibiremos a função de desvio e um princípio de grandes desvios para uma sequência de medidas que convergem, para uma medida minimizante no primeiro problema e para uma medida maximizante no segundo. O primeiro capítulo trata de aspectos da teoria de Aubry-Mather. Para um Lagrangiano L(x; v) : TN £ RN → R, satisfazendo algumas hipóteses naturais, e sob hipótese de genericidade, estamos interessados em mostrar um princípio de grandes desvios para uma sequência de medidas que convergem para a medida de Mather. D. Gomes e E. Valdinoci mostraram, para ε; h fixados, a existência de uma medida absolutamente contínua με; h que minimiza o problema de A-M discreto com entropia. Também analisaremos o problema discreto de Aubry-Mather, onde introduziremos o conceito de sub-ação e mostraremos, sob hipótese do Lagrangiano ser genérico, a unicidade de um certo tipo de sub-ação que chamaremos de calibradas. E finalmente mostraremos a existência de um outro tipo de sub-ação ditas separantes. / This work will be divided in two chapters. In both cases we present the rate function and a large deviation principle for a sequence of measures converging, to a minimizing measure in the first problem and to a maximizing measure in the second one. In the first chapter the setting will be the Aubry-Mather theory. For a Lagrangian L(x; v) : TN £RN → R, satisfying some natural hypothesis, and for a generic Lagrangian (it is known that in this case the Mather measure μ is unique and the support of μ is the Aubry set), we will show a large deviation principle for a sequence of measures that converge to the Mather measure. It follows from a result by D. Gomes and E. Valdinoci that, for ε; h fixed, there exists an absolutely continuous measure με; h that minimize the entropy penalized A-M problem. Also we will analyze the discrete A-M problem, where we introduce the concept of subaction and we will show, under the hypothesis of generic Lagrangian, the uniqueness of a kind of subaction, that we will call calibrated. And finally we will show the existence of another kind of subactions, a separating subaction.
5

The two Marys gender and power in the revolution of 1688-89 /

Kuester, Peter Allen. January 2009 (has links)
Thesis (M.A.)--Indiana University, 2009. / Title from screen (viewed on August 27, 2009). Department of History, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Jason Kelly. Includes vita. Includes bibliographical references (leaves 106-113).
6

On the Aubry-Mather theory for partial differential equations and the stability of stochastically forced ordinary differential equations

Blass, Timothy James 01 June 2011 (has links)
This dissertation is organized into four chapters: an introduction followed by three chapters, each based on one of three separate papers. In Chapter 2 we consider gradient descent equations for energy functionals of the type [mathematical equation] where A is a second-order uniformly elliptic operator with smooth coefficients. We consider the gradient descent equation for S, where the gradient is an element of the Sobolev space H[superscipt beta], [beta is an element of](0, 1), with a metric that depends on A and a positive number [gamma] > sup |V₂₂|. The main result of Chapter 2 is a weak comparison principle for such a gradient flow. We extend our methods to the case where A is a fractional power of an elliptic operator, and we provide an application to the Aubry-Mather theory for partial differential equations and pseudo-differential equations by finding plane-like minimizers of the energy functional. In Chapter 3 we investigate the differentiability of the minimal average energy associated to the functionals [mathematical equation] using numerical and perturbation methods. We use the Sobolev gradient descent method as a numerical tool to compute solutions of the Euler-Lagrange equations with some periodicity conditions; this is the cell problem in homogenization. We use these solutions to determine the minimal average energy as a function of the slope. We also obtain a representation of the solutions to the Euler-Lagrange equations as a Lindstedt series in the perturbation parameter [epsilon], and use this to confirm our numerical results. Additionally, we prove convergence of the Lindstedt series. In Chapter 4 we present a method for determining the stability of a class of stochastically forced ordinary differential equations, where the forcing term can be obtained by passing white noise through a filter of arbitrarily high degree. We use the Fokker-Planck equation to write a partial differential equation for the second moments, which we turn into an eigenvalue problem for a second-order differential operator. We develop ladder operators to determine analytic expressions for the eigenvalues and eigenfunctions of this differential operator, and thus determine the stability. / text
7

La Reducción de la Jornada de Trabajo: Entre El Sueño y la Quimera

Villavicencio Ríos, Alfredo 10 April 2018 (has links)
En el presente artículo, el autor plantea el tema de la jornada de trabajo de cara a la consolidación de la globalización, fenómeno que en el presente siglo viene generando una tendencia a la ampliación y flexibilización de la jornada de trabajo. Según el autor, históricamente la línea de evolución de la jornada marcaba una tendencia hacia su reducción, sin embargo, en los últimos años, la globalización ha acentuado las premisas del capitalismo y ha consagrado a la competitividad como un valor superior incluso a los derechos laborales más elementales como la jornada máxima. El autor pone de ejemplo la flexibilización de la jornada típica que ha dado pie a la aparición de jornadas atípicas o acumulativas (21x14, 14x10) que no solo no respetan la jornada máxima, sino que son empleadas en sectores en los que por la misma actividad que desempeñan los trabajadores, debieran aplicarse jornadas reducidas.
8

The two Marys: gender and power in the revolution of 1688-89

Kuester, Peter Allen January 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Centered around the accounts of two women—Mary Aubry, a French Catholic midwife living in London, who was burned at the stake for murdering her abusive husband, and Queen Mary of Modena, the Italian Catholic wife of James II, who allegedly tried to pass off an imposter child as her legitimate heir in the so-called “warming pan scandal,” this is a study of murder, deceit, betrayal, paranoia, and repression in seventeenth-century England. The stories of the two Marys are both stories of palpable anxiety. Though the two women bear little resemblance at first glance, they were rumored to have conspired to guarantee a male heir for James II by any means necessary. According to the London gossips, these women were willing to betray, and even kill their husbands in the case of Mary Aubry, to protect their secret plot to perpetuate a line of Catholic princes in England. Though there was little evidence to substantiate this rumor and it quickly disappeared in media accounts, these two women continued to inspire vitriolic attacks from the London press that reveal strikingly similar public concerns. Their stories struck chords of fear within audiences in late seventeenth century England that knew their entire world was threatened. Endangered by a king, James II—who appeared determined to reinstitute Catholicism in England, who showed a penchant for absolutist policies, and who seemed to have fallen into the orbit of the domineering Louis XIV—the public’s apprehension and fear was only heightened by these stories. Just as unnerving as the fears about absolutism, Catholicism and foreign domination was the specter of internal collusion that endangered not simply the political and religious spheres of English Protestant society, but also social and familial hierarchies as well. To much of late seventeenth century English society, the two Marys represented all that was wrong with the world. They were traitors to their families, traitors to the nation, and traitors to the divine. / indefinitely
9

C*-álgebras associadas a certas dinâmicas e seus estados KMS

Castro, Gilles Gonçalves de January 2009 (has links)
D'abord, on étudie trois façons d'associer une C*-algèbre à une transformation continue. Ensuite, nous donnons une nouvelle définition de l'entropie. Nous trouvons des relations entre les états KMS des algèbres préalablement définies et les états d'équilibre, donné par un principe variationnel. Dans la seconde partie, nous étudions les algèbres de Kajiwara-Watatani associees a un système des fonctions itérées. Nous comparons ces algèbres avec l'algèbre de Cuntz et le produit croisé. Enfin, nous étudions les états KMS des algèbres de Kajiwara-Watatani pour les actions provenant d'un potentiel et nous trouvouns des relations entre ces états et les mesures trouvee dans une version de le théorème de Ruelle-Perron-Frobenius pour les systèmes de fonctions itérées. / Primeiramente, estudamos três formas de associar uma C*-álgebra a uma transformação contínua. Em seguida, damos uma nova definição de entropia. Relacionamos, então, os estados KMS das álgebras anteriormente definidas com os estados de equilibro, vindos de um princípio variacional. Na segunda parte, estudamos as álgebras de Kajiwara-Watatani associadas a um sistema de funções iteradas. Comparamos tais álgebras com a álgebra de Cuntz e a álgebra do produto cruzado. Finalmente, estudamos os estados KMS das álgebras de Kajiwara-Watatani para ações vindas de um potencial e relacionamos tais estados KMS com medidas encontradas numa versão do teorema de Ruelle-Perron-Frobenius para sistemas de funções iteradas. / First, we study three ways of associating a C*-algebra to a continuous map. Then, we give a new de nition of entropy. We relate the KMS states of the previously de ned algebras with the equilibrium states, given by a variational principle. In the second part, we study the Kajiwara-Watatani algebras associated to iterated function system. We compare these algebras with the Cuntz algebra and the crossed product. Finally, we study the KMS states of the Kajiwara-Watatani algebras for actions coming from a potential and we relate such states with measures found in a version of the Ruelle-Perron- Frobenius theorem for iterated function systems.
10

C*-álgebras associadas a certas dinâmicas e seus estados KMS

Castro, Gilles Gonçalves de January 2009 (has links)
D'abord, on étudie trois façons d'associer une C*-algèbre à une transformation continue. Ensuite, nous donnons une nouvelle définition de l'entropie. Nous trouvons des relations entre les états KMS des algèbres préalablement définies et les états d'équilibre, donné par un principe variationnel. Dans la seconde partie, nous étudions les algèbres de Kajiwara-Watatani associees a un système des fonctions itérées. Nous comparons ces algèbres avec l'algèbre de Cuntz et le produit croisé. Enfin, nous étudions les états KMS des algèbres de Kajiwara-Watatani pour les actions provenant d'un potentiel et nous trouvouns des relations entre ces états et les mesures trouvee dans une version de le théorème de Ruelle-Perron-Frobenius pour les systèmes de fonctions itérées. / Primeiramente, estudamos três formas de associar uma C*-álgebra a uma transformação contínua. Em seguida, damos uma nova definição de entropia. Relacionamos, então, os estados KMS das álgebras anteriormente definidas com os estados de equilibro, vindos de um princípio variacional. Na segunda parte, estudamos as álgebras de Kajiwara-Watatani associadas a um sistema de funções iteradas. Comparamos tais álgebras com a álgebra de Cuntz e a álgebra do produto cruzado. Finalmente, estudamos os estados KMS das álgebras de Kajiwara-Watatani para ações vindas de um potencial e relacionamos tais estados KMS com medidas encontradas numa versão do teorema de Ruelle-Perron-Frobenius para sistemas de funções iteradas. / First, we study three ways of associating a C*-algebra to a continuous map. Then, we give a new de nition of entropy. We relate the KMS states of the previously de ned algebras with the equilibrium states, given by a variational principle. In the second part, we study the Kajiwara-Watatani algebras associated to iterated function system. We compare these algebras with the Cuntz algebra and the crossed product. Finally, we study the KMS states of the Kajiwara-Watatani algebras for actions coming from a potential and we relate such states with measures found in a version of the Ruelle-Perron- Frobenius theorem for iterated function systems.

Page generated in 0.0285 seconds