• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 29
  • 19
  • 17
  • 13
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insights Into the Virulence Determinants of the Emerging Pathogen Kingella kingae

Porsch, Eric Allen January 2012 (has links)
<p><italic>Kingella kingae</italic> is an emerging bacterial pathogen that is being recognized increasingly as an important etiology of septic arthritis, osteomyelitis, and bacteremia, especially in young children. The pathogenesis of <italic>K. kingae</italic> disease begins with bacterial adherence to respiratory epithelium in the posterior pharynx. Previous work identified type IV pili as a critical factor for adherence to human epithelial cells. However, the finding that a significant percentage of pharyngeal isolates are non-piliated suggests that <italic>K. kingae</italic> expresses additional surface factors that modulate interactions with host cells and likely play key roles in the pathogenesis of <italic>K. kingae</italic> disease. The purpose of this work was to increase our understanding of <italic>K. kingae</italic> virulence determinants, specifically focused on defining the surface factors and the mechanism involved in <italic>K. kingae</italic> adhesive interactions with epithelial cells. Additionally, this work aimed to further characterize components of the <italic>K. kingae</italic> type IV pilus system, namely the PilC proteins and PilA2. </p><p>We first set out to identify non-pilus factors that influence <italic>K. kingae</italic> interactions with human epithelial cells. Using targeted genetic approaches, we found that insertional inactivation of the gene encoding a predicted trimeric autotransporter protein called Knh (Kingella NhhA homolog) resulted in reduced adherence to human epithelial cells. In addition, using a variety of techniques, including morphological analysis, cationic ferritin staining, and thin section transmission electron microscopy, we established that <italic>K. kingae</italic> elaborates a surface-associated polysaccharide capsule that requires a predicted ABC-type transporter export operon called <italic>ctrABCD for surface presentation. Furthermore, using quantitative human epithelial cell adherence assays, we discovered that the presence of surface capsule interferes with Knh-mediated adherence by non-piliated organisms and that maximal adherence in the presence of capsule requires the predicted type IV pilus retraction machinery, PilT/PilU. Based on the data presented here, we propose a novel adherence mechanism that allows <italic>K. kingae</italic> to adhere efficiently to human epithelial cells while remaining encapsulated and more resistant to immune clearance. </p><p>Having established that <italic>K. kingae</italic> produces a capsule, a large-scale polysaccharide purification technique was developed for capsule analysis of strain 269-492. Biochemical assays determined that the purified material contained thiobarbituric and phenol-sulfuric acid reactive glycosyl residues. In collaboration with the University of Georgia Complex Carbohydrate Research Center (CCRC), mass spectrometry identified galactose, N-acetyl-galactosamine, and Kdo as the major glycosyl components of the polysaccharide preparation. NMR spectroscopy revealed that the purified material contained two distinct polysaccharides with the structures of &rarr;5)&ndash;&beta;&ndash;Gal<italic>f</italic>&ndash;(1&rarr; and &rarr;3)&ndash;&beta;&ndash;GalNAc<italic>p</italic>&ndash;(1&rarr;5)&ndash;&beta;&ndash;Kdo<italic>p</italic>&ndash;(2&rarr;. Further characterization of the polysaccharides expressed by <italic>K. kingae</italic> may have implications for disease prevention strategies. </p><p>Previous work in our lab found that two PilC-like proteins called PilC1 and PilC2 influence type IV pili expression and pilus-mediated adherence. Production of either PilC1 or PilC2 is necessary for <italic>K. kingae</italic> piliation and bacterial adherence. We set out to further investigate the role of PilC1 and PilC2 in type IV pilus-associated phenotypes. We found that PilC1 contains a functional nine amino acid calcium-binding (Ca-binding) site with homology to the <italic>Pseudomonas aeruginosa</italic> PilY1 Ca-binding site and that PilC2 contains a functional 12 amino acid Ca-binding site with homology to the human calmodulin Ca-binding site. Using targeted mutagenesis to disrupt the Ca-binding sites, we demonstrated that the PilC1 and PilC2 Ca-binding sites are dispensable for piliation. Interestingly, we show that the PilC1 site is necessary for twitching motility and adherence to Chang epithelial cells, while the PilC2 site has only a minor influence on twitching motility and no influence on adherence. These findings establish key differences in PilC1 and PilC2 function in <italic>K. kingae</italic> and provide insights into the biology of the PilC-like family of proteins.</p><p>Lastly, we set out to define the role of the PilA2 minor pilin in <italic>K. kingae</italic> strain 269-492. While previous studies indicated that PilA2 is not essential for pilus expression or adherence to epithelial cells, analysis of the pilin locus in a diverse set of clinical isolates revealed that the <italic>pilA2</italic> gene sequence is highly conserved, suggesting it serves an important function. Using targeted mutagenesis we showed that PilA2 is not essential for twitching motility and may or may not be involved in natural competence. Western blot analysis was unable to detect PilA2 in wild type pilus preparations, indicating that it is expressed at a level beneath the assay detection limit or does not localize to the pilus. Additionally, site-directed mutagenesis was used to place <italic>pilA2</italic> under control of the highly active <italic>pilA1</italic> promoter and showed that PilA2 is able to be assembled into fibers that mediate intermediate adherence to epithelial cells. </p><p>Taken together, this work expands our knowledge of the <italic>K. kingae</italic> surface factor repertoire and provides insights into the roles of type IV pilus components. The mechanism of<italic> K. kingae</italic> adherence to epithelial cells is beginning to emerge. These contributions may lead to novel strategies for the prevention of invasive <italic>K. kingae</italic> disease in young children.</p> / Dissertation
2

A Tale of Two Proteins: Insights into the Haemophilus influenzae Hap and Hia Autotransporters

Spahich, Nicole Ann January 2011 (has links)
<p>Nontypeable Haemophilus influenzae (NTHi) is a common commensal in the human nasopharynx that can cause localized respiratory tract diseases such as otitis media, bronchitis, and pneumonia. NTHi adheres to respiratory epithelial cells, a critical step in the process of colonization enabled by bacterial surface adhesive structures called adhesins. One group of NTHi adhesins are autotransporters, proteins that have an N-terminal signal sequence, a C-terminal &#946;-barrel domain, and an internal passenger domain with effector function. The goal of this work was to increase our understanding of two NTHi autotransporters, Hap and Hia.</p><p>Hap is a monomeric autotransporter that mediates adherence to epithelial cells and extracellular matrix (ECM) proteins. Hap also self-associates with protein on neighboring bacteria, resulting in bacterial aggregation and microcolony formation. The Hap passenger domain contains the regions responsible for adhesive activity. To define the molecular mechanism of Hap adhesive activity, we crystallized the Hap passenger domain. Characterization of the crystal structure revealed an N-terminal globular domain and a more ordered, prism-like C-terminal domain. Interestingly, Hap crystallized as a multimer, suggesting that Hap-Hap interactions occurred in the passenger domain. Progressive deletions of the &#946;-loops that comprise the C-terminal region disrupted Hap-Hap interactions and led to a defect in bacterial settling. To further support that the C-terminal domain was responsible for Hap-Hap interactions,</p><p>7</p><p>we purified the wild type and truncated passenger domains and conjugated the proteins to latex beads. By light microscopy we visualized bead aggregation when the wild type passenger domain was conjugated to the beads, but not when the truncated passenger domain was conjugated. These results show that the C-terminal portion of the Hap passenger domain is responsible for Hap-Hap interactions leading to multimerization. Hap multimerization could be important in microcolony formation that leads to biofilm formation in vivo.</p><p>The ECM binding domain in located in the final 511 amino acids of the Hap passenger domain. To pin-point the region of the ECM protein fibronectin that is recognized by Hap, we spotted small fragments of fibronectin onto nitrocellulose membranes and incubated the membrane with purified Hap passenger domain. Far Western analysis using Hap antibody revealed that the smallest fibronectin region necessary for binding was comprised of the first two type III repeats, FNIII(1-2). To define the regions of Hap responsible for interaction with fibronectin, we mutated motifs in the Hap passenger domain that are important for fibronectin binding in other bacterial proteins. Based on assessment by ELISA, many of the mutations located between amino acids 525-725 caused reduced bacterial binding to fibronectin. However, no mutation totally ablated binding, suggesting that a larger Hap region is involved in fibronectin binding.</p><p>8</p><p>In an additional study, we identified a relationship between Hap levels in the outer membrane and the expression of lipopolysaccharide (LPS) biosynthesis enzymes. Through Western and qPCR analysis, we found that mutation of the rfaF, pgmB, lgtC, kfiC, orfE, rfbP, lsgB and lsgD genes involved in the synthesis of LPS oligosaccharide core in H. influenzae strain Rd/HapS243A resulted in loss of Hap in the bacterial outer membrane and a decrease in hap transcript. In contrast, the same mutations had no effect on outer membrane localization of H. influenzae P5 and IgA1 protease or levels of the p5 or iga1 transcripts, suggesting a Hap-specific effect. Elimination of the HtrA periplasmic protease resulted in a return of Hap to the outer membrane and restoration of wild type levels of hap transcript. We speculate that the lack of certain LPS biosynthesis enzymes causes Hap to mislocalize and accumulate in the periplasm, where it is degraded by HtrA. This degradation then leads to a decrease in hap transcript. lgtC is one of several phase variable LPS biosynthesis genes. Using an antibody against the epitope formed in part by the lgtC gene product, we identified lgtC phase-off bacteria by Western analysis of colony blots. Consistent with our previous observations, in lgtC phase off bacteria Hap was absent from the outer membrane and hap transcript was reduced. By analyzing a lgtC/lic2A double mutant, we found that Hap localization in the outer membrane and hap transcript levels were not related to LPS size but instead to the functions of the LPS synthesis enzymes themselves. This relationship could be beneficial to bacteria in vivo as a way to regulate Hap expression.</p><p>9</p><p>Early models suggested that autotransporters do not require accessory factors for folding and OM insertion. However, mounting recent evidence has suggested that the Bam complex is required for OM localization of most &#946;-barrel proteins, including autotransporters. We studied the role of the Bam complex in OM localization of the trimeric autotransporter Hia. We expressed Hia in E. coli strains with mutations in the Bam complex and found that BamA and BamD were needed for Hia localization, while BamB, BamC, and BamE were not necessary. In further studies, we mutated the C-terminus of Hia and found that the final and third-to-last amino acids were the most important for outer membrane localization.</p><p>In summary, this work provides insights into the regulation and adhesive activity of Hap and the outer membrane localization of Hia. We have learned important details about these factors that shed light on aspects of H. influenzae disease and could lead to new antimicrobial therapies.</p> / Dissertation
3

The Autotransporter Protease EspP: Crystal Structure of the Passenger Domain and Relation to Clot Formation and Stability in Human Blood

Khan, Shekeb 14 January 2014 (has links)
Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal “passenger domain” responsible for the specific effector functions of the molecule and a C-terminal “β domain” responsible for translocation of the passenger across the bacterial outer membrane. The serine protease autotransporters of Enterobacteriaceae (SPATEs) represent those autotransporters produced by Enterobacteriaceae where, as the name suggests, the passenger domain functions as a serine protease. Members of this family of autotransporters include among others the extracellular serine protease EspP produced by enterohemorrhagic Escherichia coli (EHEC) O157:H7. EHEC, especially those of serotype O157:H7, have been implicated as causative agents of hemorrhagic colitis and hemolytic-uremic syndrome, both of which include disruption of the normal processes in human blood responsible for maintaining good health. EspP has previously been shown to cleave human coagulation factors V and VIII and has been hypothesized to possibly contribute to the mucosal hemorrhage in patients infected with EHEC. This thesis aims to better understand the functional significance of EspP in EHEC pathogenesis by analyzing the crystallographic structure of the mature passenger domain of EspP and by investigating, in vitro, its effects on the coagulation and fibrinolytic processes in human blood. Like the previously determined autotransporter passenger domains, the EspP passenger domain is found to contain an extended right-handed parallel β-helix preceded by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this β-helix. Furthermore, EspP is found to alter hemostasis in vitro by drastically decreasing the activities of human blood coagulation factors V, VII, VIII and XII, by enhancing platelet-fibrin clot formation, and by accelerating fibrinolysis. These results provide compelling evidence for a pathogenic role played by EspP during EHEC infection.
4

The Autotransporter Protease EspP: Crystal Structure of the Passenger Domain and Relation to Clot Formation and Stability in Human Blood

Khan, Shekeb 14 January 2014 (has links)
Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal “passenger domain” responsible for the specific effector functions of the molecule and a C-terminal “β domain” responsible for translocation of the passenger across the bacterial outer membrane. The serine protease autotransporters of Enterobacteriaceae (SPATEs) represent those autotransporters produced by Enterobacteriaceae where, as the name suggests, the passenger domain functions as a serine protease. Members of this family of autotransporters include among others the extracellular serine protease EspP produced by enterohemorrhagic Escherichia coli (EHEC) O157:H7. EHEC, especially those of serotype O157:H7, have been implicated as causative agents of hemorrhagic colitis and hemolytic-uremic syndrome, both of which include disruption of the normal processes in human blood responsible for maintaining good health. EspP has previously been shown to cleave human coagulation factors V and VIII and has been hypothesized to possibly contribute to the mucosal hemorrhage in patients infected with EHEC. This thesis aims to better understand the functional significance of EspP in EHEC pathogenesis by analyzing the crystallographic structure of the mature passenger domain of EspP and by investigating, in vitro, its effects on the coagulation and fibrinolytic processes in human blood. Like the previously determined autotransporter passenger domains, the EspP passenger domain is found to contain an extended right-handed parallel β-helix preceded by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this β-helix. Furthermore, EspP is found to alter hemostasis in vitro by drastically decreasing the activities of human blood coagulation factors V, VII, VIII and XII, by enhancing platelet-fibrin clot formation, and by accelerating fibrinolysis. These results provide compelling evidence for a pathogenic role played by EspP during EHEC infection.
5

Structural characterization of EtpA an adhesin from enterotoxigenic Escherichia coli (ETEC)

Mandyoli, Lungelo January 2016 (has links)
Enterotoxigenic Escherichia coli (ETEC) encompass a group of diverse bacterial pathogens that collectively cause hundreds of millions of diarrheal cases annually, mostly in developing countries. As part of its infection strategy, ETEC invades and colonizes small intestinal epithelial cells where it secretes heat-labile and/or heat-stable enterotoxins, inducing diarrhoea. The ability of ETEC to invade human epithelial cells is a hallmark of its pathogenicity and is controlled by a set of plasmid and chromosome encoded virulence factors. They include EtpA, a 170 kDa plasmid encoded autotransporter. During infection, EtpA functions as an adhesin linking flagellin at the tip of ETEC flagella to the host cell surface and allowing ETEC to deposit its toxins. Antibodies targeting either EtpA or the conserved regions of flagellin impair delivery of the heat-labile toxin in vitro, and prevent intestinal colonization of mice following gastrointestinal challenge with ETEC. EtpA is thus critical to the pathogenicity of ETEC. In this study, a truncated version of EtpA (35 kDa) termed N-terminal EtpA69-445 or N-EtpA69-445 was cloned and produced as an N-terminal GST-tagged cytoplasmic fusion protein in E. coli BL21 cells. The protein was purified by affinity chromatography on glutathione agarose beads. However, the yield of the pure protein was poor due to its limited solubility. As an alternative, a 57 kDa truncated version of EtpA (N-EtpA69-607) was produced as a secreted C-terminal His6-tagged fusion protein in E. coli TOP10 cells. The protein was purified to homogeneity by metal affinity chromatography (MAC) using Ni-NTA and ion exchange chromatography (IEC) on a Mono S 10/100 GL column. Biophysical characterization of N-EtpA69-607 using circular dichroism (CD) spectroscopy revealed the typical spectrum of a β-helical protein. The in silico modelled structure of the protein confirmed N-EtpA69-607 to be a β-helical protein. CD spectra recorded at increasing temperatures indicated N-EtpA69-607 to be thermally highly stable retaining its fold up to 95°C. Dynamic light scattering (DLS) experiments showed that N-EtpA69-607 is polydisperse in solution forming higher oligomers. Lead crystallization conditions of N- EtpA69-607 were determined but the crystals were too small for X-ray data collection. This study thus represents a significant step towards the characterization of the three dimensional structure of EtpA and understanding its structure-function relationship. / Dissertation (MSc)--University of Pretoria, 2016. / Biochemistry / MSc / Unrestricted
6

Role of IgA1 Protease £]-chain in Bacterial Infection

Su, Yu-ni 03 August 2006 (has links)
Some pathogenic bacteria including Haemophilus influenzae and Neisseria meningitides produce a protease called IgA1 protease to impair a major antibody, immunoglobulin A1 (IgA1), on human mucosal surfaces. The iga mRNA is initially translated into a precursor containing four distinct domains: a 31-amino acids signal peptide which leads the precursor to the periplasmic space, an 105-kDa protease domain which cleaves host IgA1 molecule, a £]-domain responsible for autotransportation of the protease domain, and a short linker between the protease and the £]-domains. The autotransporter £]-domain can be further divided into three subdomains in Neisseria protease: an extracellular linking region £\-protein and a membrane-embedded £]-core, between which there is a distinguished sequence called surface region. The hydrolytic function of the protease and the transporter role of £]-core had been studied extensively, but the £\-protein and the surface regions were less defined, or had their role characterized. Thus this study is designed to reveal the possible pathogenic functions of the £\-protein and the surface region in bacterial adherence to human cell surfaces. To complete this project, recombinant £\-protein and the surface region were expressed in IgA1 protease-negative E. coli strain (UT5600) respectively and purified to homogeneity. These recombinant proteins were used in cellular assays for bacterial adhesion on human lung cancer cell (A549). Four different invasive strains of pathogenic bacteria (IgA1 protease-positive or negative), were recruited in adherence assays to determine the effect of the purified £\-protein and the surface region on bacterial adherence to A549 cells. Results showed that the both £\-protein and the surface region played a role in bacterial adherence in a species-dependent manner.
7

Genomics of pathogenic and commensal \(Escherichia\) \(coli\) / Genomik pathogener und kommensaler \(Escherichia\) \(coli\)

Leimbach, Andreas January 2017 (has links) (PDF)
High-throughput sequencing (HTS) has revolutionized bacterial genomics. Its unparalleled sensitivity has opened the door to analyzing bacterial evolution and population genomics, dispersion of mobile genetic elements (MGEs), and within-host adaptation of pathogens, such as Escherichia coli. One of the defining characteristics of intestinal pathogenic E. coli (IPEC) pathotypes is a specific repertoire of virulence factors (VFs). Many of these IPEC VFs are used as typing markers in public health laboratories to monitor outbreaks and guide treatment options. Instead, extraintestinal pathogenic E. coli (ExPEC) isolates are genotypically diverse and harbor a varied set of VFs -- the majority of which also function as fitness factors (FFs) for gastrointestinal colonization. The aim of this thesis was the genomic characterization of pathogenic and commensal E. coli with respect to their virulence- and antibiotic resistance-associated gene content as well as phylogenetic background. In order to conduct the comparative analyses, I created a database of E. coli VFs, ecoli_VF_collection, with a focus on ExPEC virulence-associated proteins (Leimbach, 2016b). Furthermore, I wrote a suite of scripts and pipelines, bac-genomics-scripts, that are useful for bacterial genomics (Leimbach, 2016a). This compilation includes tools for assembly and annotation as well as comparative genomics analyses, like multi-locus sequence typing (MLST), assignment of Clusters of Orthologous Groups (COG) categories, searching for protein homologs, detection of genomic regions of difference (RODs), and calculating pan-genome-wide association statistics. Using these tools we were able to determine the prevalence of 18 autotransporters (ATs) in a large, phylogenetically heterogeneous strain panel and demonstrate that many AT proteins are not associated with E. coli pathotypes. According to multivariate analyses and statistics the distribution of AT variants is instead significantly dependent on phylogenetic lineages. As a consequence, ATs are not suitable to serve as pathotype markers (Zude et al., 2014). During the German Shiga toxin-producing E. coli (STEC) outbreak in 2011, the largest to date, we were one of the teams capable of analyzing the genomic features of two isolates. Based on MLST and detection of orthologous proteins to known E. coli reference genomes the close phylogenetic relationship and overall genome similarity to enteroaggregative E. coli (EAEC) 55989 was revealed. In particular, we identified VFs of both STEC and EAEC pathotypes, most importantly the prophage-encoded Shiga toxin (Stx) and the pAA-type plasmid harboring aggregative adherence fimbriae. As a result, we could show that the epidemic was caused by an unusual hybrid pathotype of the O104:H4 serotype. Moreover, we detected the basis of the antibiotic multi-resistant phenotype on an extended-spectrum beta-lactamase (ESBL) plasmid through comparisons to reference plasmids. With this information we proposed an evolutionary horizontal gene transfer (HGT) model for the possible emergence of the pathogen (Brzuszkiewicz et al., 2011). Similarly to ExPEC, E. coli isolates of bovine mastitis are genotypically and phenotypically highly diverse and many studies struggled to determine a positive association of putative VFs. Instead the general E. coli pathogen-associated molecular pattern (PAMP), lipopolysaccharide (LPS), is implicated as a deciding factor for intramammary inflammation. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype was proposed presumably encompassing strains more adapted to elicit bovine mastitis with virulence traits differentiating them from commensals. We sequenced eight E. coli isolates from udder serous exudate and six fecal commensals (Leimbach et al., 2016). Two mastitis isolate genomes were closed to a finished-grade quality (Leimbach et al., 2015). The genomic sequence of mastitis-associated E. coli (MAEC) strain 1303 was used to elucidate the biosynthesis gene cluster of its O70 LPS O-antigen. We analyzed the phylogenetic genealogy of our strain panel plus eleven bovine-associated E. coli reference strains and found that commensal or MAEC could not be unambiguously allocated to specific phylogroups within a core genome tree of reference E. coli. A thorough gene content analysis could not identify functional convergence of either commensal or MAEC, instead both have only very few gene families enriched in either pathotype. Most importantly, gene content and ecoli_VF_collection analyses showed that no virulence determinants are significantly associated with MAEC in comparison to bovine fecal commensals, disproving the MPEC hypothesis. The genetic repertoire of bovine-associated E. coli, again, is dominated by phylogenetic background. This is also mostly the case for large virulence-associated E. coli gene cluster previously associated with mastitis. Correspondingly, MAEC are facultative and opportunistic pathogens recruited from the bovine commensal gastrointestinal microbiota (Leimbach et al., 2017). Thus, E. coli mastitis should be prevented rather than treated, as antibiotics and vaccines have not proven effective. Although traditional E. coli pathotypes serve a purpose for diagnostics and treatment, it is clear that the current typing system is an oversimplification of E. coli's genomic plasticity. Whole genome sequencing (WGS) revealed many nuances of pathogenic E. coli, including emerging hybrid or heteropathogenic pathotypes. Diagnostic and public health microbiology need to embrace the future by implementing HTS techniques to target patient care and infection control more efficiently. / Eines der definierenden Charakteristika intestinal pathogener E. coli (IPEC) Pathotypen ist ein spezifisches Repertoire an Virulenzfaktoren (VFs). Viele dieser IPEC VFs werden als Typisierungsmarker benutzt. Stattdessen sind Isolate extraintestinal pathogener E. coli (ExPEC) genotypisch vielfältig und beherbergen verschiedenartige VF Sets, welche in der Mehrheit auch als Fitnessfaktoren (FFs) für die gastrointestinale Kolonialisierung fungieren. Das Ziel dieser Dissertation war die genomische Charakterisierung pathogener und kommensaler E. coli in Bezug auf ihren Virulenz- und Antibiotikaresistenz-assoziierten Gengehalt sowie ihre phylogenetische Abstammung. Als Voraussetzung für die vergleichenden Analysen erstellte ich eine E. coli VF-Datenbank, ecoli_VF_collection, mit Fokus auf Virulenz-assoziierte Proteine von ExPEC (Leimbach, 2016b). Darüber hinaus programmierte ich mehrere Skripte und Pipelines zur Anwendung in der bakteriellen Genomik, bac-genomics-scripts (Leimbach, 2016a). Diese Sammlung beinhaltet Tools zur Unterstützung von Assemblierung und Annotation sowie komparativer Genomanalysen, wie Multilokus-Sequenztypisierung (MLST), Zuweisung von Clusters of Orthologous Groups (COG) Kategorien, Suche nach homologen Proteinen, Identifizierung von genomisch unterschiedlichen Regionen (RODs) und Berechnung Pan-genomweiter Assoziationsstatistiken. Mithilfe dieser Tools konnten wir die Prävalenz von 18 Autotransportern (ATs) in einer großen, phylogenetisch heterogenen Stammsammlung bestimmen und nachweisen, dass viele AT-Proteine nicht mit E. coli Pathotypen assoziiert sind. Multivariate Analysen und Statistik legten offen, dass die Verteilung von AT-Varianten vielmehr signifikant von phylogenetischen Abstammungslinien abhängt. Deshalb sind ATs nicht als Marker für Pathotypen geeignet (Zude et al., 2014). Während des bislang größten Ausbruchs von Shiga-Toxin-produzierenden E. coli (STEC) im Jahre 2011 in Deutschland waren wir eines der Teams, welches die genomischen Eigenschaften zweier Isolate analysieren konnte. Basierend auf MLST und Detektion orthologer Proteine zu bekannten E. coli Referenzgenomen konnte ihre enge phylogenetische Verwandschaft und Ähnlichkeit des gesamten Genoms zum enteroaggregativen E. coli (EAEC) 55989 aufgedeckt werden. Im Detail identifizierten wir VFs von STEC und EAEC Pathotypen, vor allem das Prophagen-kodierte Shiga-Toxin (Stx) und ein Plasmid des pAA-Typs kodierend für aggregative Adhärenz-Fimbrien. Die Epidemie wurde demnach durch einen ungewöhnlichen Hybrid-Pathotyp vom O104:H4 Serotyp verursacht. Zusätzlich identifizierten wir die Grundlage für den multiresistenten Phänotyp dieser Ausbruchsstämme auf einem Extended-Spektrum-beta-Laktamase (ESBL) Plasmid über Vergleiche mit Referenzplasmiden. Mit diesen Informationen konnten wir ein horizontales Gentransfer-Modell (HGT) zum Auftreten dieses Pathogenen vorschlagen (Brzuszkiewicz et al., 2011). Ähnlich zu ExPEC sind E. coli Isolate boviner Mastitiden genotypisch und phänotypisch sehr divers, und viele Studien scheiterten am Versuch eine positive Assoziation vermeintlicher VFs nachzuweisen. Stattdessen gilt Lipopolysaccharid (LPS) als entscheidender Faktor zur intramammären Entzündung. Gleichwohl wurde ein mammärer pathogener E. coli (MPEC) Pathotyp vorgeschlagen, der mutmaßlich Stämme umfasst, welche eher geeignet sind eine bovine Mastitis auszulösen und über Virulenz-Merkmale von Kommensalen abgegrenzt werden können. Wir sequenzierten acht E. coli Isolate aus serösem Eutersekret und sechs fäkale Kommensale (Leimbach et al., 2016). Bei zwei Mastitisisolaten wurden die Genome vollständig geschlossen (Leimbach et al., 2015). Anhand der genomischen Sequenz des Mastitis-assoziierten E. coli (MAEC) Stamms 1303 wurde das Gencluster zur Biosynthese seines O70 LPS O-Antigens aufgeklärt. Wir analysierten die phylogenetische Abstammung unserer Stammsammlung plus elf bovin-assoziierter E. coli Referenzstämme, aber konnten weder MAEC noch Kommensale bestimmten Phylogruppen innerhalb eines Core-Genom Stammbaums aus Referenz-E. coli eindeutig zuordnen. Eine ausführliche Gengehalt-Analyse konnte keine funktionelle Konvergenz innerhalb von Kommensalen oder MAEC identifizieren. Stattdessen besitzen beide nur sehr wenige Genfamilien, die bevorzugt in einer der beiden Pathotypen vorkommen. Weder eine Gengehalt- noch eine ecoli_VF_collection-Analyse konnte zeigen, dass eine signifikante Assoziation von bestimmten Virulenzfaktoren mit MAEC, im Vergleich zu bovinen fäkalen Kommensalen, besteht. Damit wurde die MPEC Hypothese widerlegt. Auch das genetische Repertoire von Rinder-assoziierten E. coli wird durch die phylogenetische Abstammung bestimmt. Dies ist überwiegend auch bei großen Virulenz-assoziierten Genclustern der Fall, die bisher mit Mastitis in Verbindung gebracht wurden. Dementsprechend sind MAEC fakultative und opportunistische Pathogene, die ihren Ursprung als Kommensale in der bovinen gastrointestinalen Mikrobiota haben (Leimbach et al., 2017). Obwohl traditionelle E. coli Pathotypen in der Diagnostik und Behandlung einen Zweck erfüllen, ist es offensichtlich, dass das derzeitige Typisierungs-System die genomische Plastizität von E. coli zu sehr vereinfacht. Die Gesamtgenom-Sequenzierung (WGS) deckte viele Nuancen pathogener E. coli auf, einschließlich entstehender hybrider oder heteropathogener Pathotypen. Diagnostische und medizinische Mikrobiologie müssen einen Schritt in Richtung Zukunft gehen und HTS-Technologien anwenden, um Patientenversorgung und Infektionskontrolle effizienter zu unterstützen.
8

The Structural And Folding Characteristics Of The Plasmid-encoded Toxin From Enteroaggregative Escherichia Coli

Scaglione, Patricia 01 January 2008 (has links)
Plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli is a member of the autotransporter subfamily termed SPATE (serine protease autotransporters of Enterobacteriaceae). Autotransporters, which are the most common Gram-negative secreted virulence factors, contain three functional domains: an amino terminal leader sequence, a mature protein or passenger domain, and a carboxy-terminal β domain. The leader sequence targets the protein to the periplasmic space and the β domain then forms a β-barrel pore in the outer membrane of the bacterium which allows the passenger domain to enter the external milieu. In some cases the passenger domain is cleaved from the β-barrel at the extracellular surface to release a soluble toxin. This is thought to be a self-contained process that does not require chaperones or ATP for folding and export of the passenger domain. Pet produces cytotoxic effects through cleavage of its target, the actin-binding protein α- fodrin. Pet is secreted into the extracellular environment, but its target lies within the cytosol. To reach its target, Pet moves from the cell surface to the ER where it triggers ER-associated degradation (ERAD) to enter the cytosol. ERAD is a normal cellular process in which improperly folded proteins are exported from the ER to the cytosol for degradation. Other toxins that utilize this pathway are AB toxins such as cholera toxin (CT) and ricin. The A subunits of these toxins are thermally unstable, and this facilitates their ERAD-dependent translocation into the cytosol. Pet, however, is not an AB toxin. We predict that thermal unfolding is not the mechanism Pet employs to exploit ERAD. It was necessary to purify the toxin first in order to study the structural properties and ER export of Pet. Surprisingly, purified Pet eluted as two close peaks by size exclusion chromatography. Both peaks were Pet as demonstrated through immunoblotting. The folding efficiency of autotransporters has not been extensively elucidated, and based on our purification results, we hypothesized that there is inefficiency in the folding of autotransporters, specifically Pet. A toxicity assay showed that Pet peak one did not display cytopathic activity while Pet peak two did. CD and fluorescence spectroscopy measurements also detected structural differences between the two variants of Pet and demonstrated that Pet peak one was an unfolded variant of Pet peak two. Native gel electrophoresis and biophysical measurements indicated that Pet peak one did not exist as a dimer or aggregate. Our results indicate there are two forms of Pet, and thus the folding process of autotransporters appears to be inherently inefficient. Active Pet (peak two) was used for further biophysical measurements and biochemical assays. Circular dichroism and fluorescence spectroscopy showed that the secondary and tertiary structures of Pet are maintained at physiological temperature, 37°C. Thermal unfolding of Pet occurred at temperatures above 50°C. Fluorescence quenching of Pet was also performed and demonstrated that, at 37°C, there are solvent-exposed aromatic amino acids. The slight structural alterations to Pet at physiological temperature as well as the exposed hydrophobic residues could trigger ERAD. In addition, a modeled structure of Pet revealed a hydrophobic loop which is surface-exposed and a likely target for toxin-ERAD interactions. The data suggests that translocation of Pet mediated by ERAD can occur by a mechanism different from certain AB toxins. An open, hydrophobic conformation likely triggers ERAD, but may also contribute to poor folding.
9

Vat (vacuolating autotransporter toxin) produzida por APEC (avian pathogenic Escherichia coli) = efeitos intracelulares e distribuição filogenetica / Vat (vacuolating autotransporter toxin) produced by APEC (avian pathogenic Escherichia coli) : intracellular effects and philogroups distribution

Aragão, Annelize Zambon Barbosa 1984- 15 August 2018 (has links)
Orientador: Tomomasa Yano / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-15T17:06:12Z (GMT). No. of bitstreams: 1 Aragao_AnnelizeZambonBarbosa1984-_M.pdf: 1442209 bytes, checksum: 20b02ae5cd0351830e8e623b5e9c17a4 (MD5) Previous issue date: 2010 / Resumo: Escherichia coli isoladas de lesões de celulite aviária em frangos de corte produzem uma citotoxina que causa intensa vacuolização citoplasmática em células de origem aviária, mas não em células de mamíferos. Esta citotoxina foi denominada Vat (vacuolating autotransporter toxin) e apresenta massa molecular de 56 kDa e ponto isoelétrico de 6,37. Estudos preliminares comprovaram que a Vat induz, em frangos de corte, respostas inflamatórias liberando as citocinas TNF-a e IL-10, indicando o seu papel relevante no desenvolvimento da celulite aviária. A dose citotóxica para 50% das células foi determinada em 40 µg.mL-1. A Vat aplicada sobre cultura de células FEG (fibroblasto de embrião de galinha) induz perda da viabilidade em 50% células após 18 horas de ensaio. Ensaios com a toxina indicam que, após 24 horas, os lisossomos mostram-se bastante comprometidos (37% viáveis), a viabilidade mitocondrial decresce e se mantém durante as 24 horas do ensaio em cerca de 55%, havendo uma redução acentuada das mitocôndrias viáveis após 36 horas da aplicação da Vat. A membrana plasmática das células FEG também sofre alterações de integridade, liberando 66,7 unidades de LDH (lactato desidrogenase)/mL, após 12 horas de ensaio (pico máximo de liberação, que corresponde a 51,7% do conteúdo total de LDH em células FEG). A Vat induz alterações no citoesqueleto das células FEG e os ensaios com o marcador fluorescente Acridine Orange indicam que há um aumento de RNA no citoplasma das células. Neste trabalho o gene vat foi detectado em amostras de APEC (filogrupos A e B1), UPEC e SEPEC (ambas em filogrupos B2 e D). Todas as amostras positivas para vat foram examinadas em células, sendo que 54% (27/50) apresentaram atividade vacuolizante em células FEG. Nossos resultados indicam que a Vat é uma toxina que induz diversas ações intracelulares, podendo ser chamada de toxina multifuncional / Abstract: Escherichia coli isolated from avian cellulitis lesions in broilers produce a cytotoxin that causes intense vacuolation in avian cells, but not in mammals cells. This cytotoxin, called Vat (vacuolating autotransporter toxin), has a 56 kDa protein and has a isoeletric point of 6.37. Preliminary studies have shown the Vat induce inflammatory response in broilers, by releasing cytokines TNF-a and IL-10, what indicates it can act in the avian cellulitis development. The cytotoxic dose for 50% of the cells was fixed at 40 µg.mL-1. The tests using CEF (chicken embryo fibroblasts) cells indicate Vat leads to cell viability loss in 50% of the cells after 18 hours. The tests with the toxin indicate that after 24 hours the lysosomes are 37% viable, the mitochondrial viability decreases after 24 hours (about 55%), with a remarkable reduction of viable mitochondria after 36 hours of Vat application. The CEF cells' plasma membrane of also loses integrity, releasing 66.7 units LDH (lactato dehydrogenase)/mL, after 12 hours of test (which is 51.7% of the total LDH content in CEF cells). The CEF cells' cytoskeleton also changed when exposed to Vat. Essays involving the fluorescent dye Acridine Orange indicate a RNA increase in the cytoplasm of cells. In this work the vat gene was detected in samples of APEC (A and B1 philogroups), UPEC and SEPEC (B2 and D philogroups). All vat positive samples have been tested for vat in cells, and 54% (27/50) of them have shown vacuolizing activity in CEF cells. The results indicate Vat is a toxin which induces various intracellular actions, therefore it can be called a multifunctional toxin / Mestrado / Microbiologia / Mestre em Genética e Biologia Molecular
10

Cha-Cha-Cha: Variable Adhesive Activity of the <italic>Haemophilus</Italic> Cryptic Genospecies Trimeric Autotransporter Cha

Sheets, Amanda Joan January 2009 (has links)
<p>Disease caused by the Gram-negative <italic>Haemophilus</italic> cryptic genospecies begins with colonization of the maternal genital or neonatal respiratory tract. The primary goal of this work was to identify and characterize the molecular determinant(s) of <italic>Haemophilus<i/talic> cryptic genospecies adherence as a means to better understand the specific adaptation of this species to the urogenital tract and neonatal respiratory tract. Using transposon mutagenesis of prototype strain 1595, we identified a locus that is essential for <italic>Haemophilus</italic> cryptic genospecies adherence to a variety of epithelial cell lines of both genital and respiratory origin. This locus encodes a protein called Cha that shares homology with trimeric autotransporters. Trimeric autotransporters are composed of an N-terminal signal peptide, an internal passenger domain that harbors adhesive activity, and a short C-terminal membrane anchor domain and are classically characterized by head-stalk-anchor domain architecture. By generating chimeric proteins, we demonstrated that the C-terminus of Cha trimerizes in the bacterial outer membrane and is capable presenting a heterologous passenger domain (Hia) in a functional form, thus confirming that Cha is a trimeric autotransporter. Southern analysis revealed that <italic>cha</italic> is unique to the <italic>Haemophilus</italic> cryptic genospecies and is ubiquitous among these strains. </p><p>Similar to a number of trimeric autotransporters, the passenger domain of Cha contains scattered clusters of YadA-like head domains associated with head-to-stalk neck adaptor motifs, predicted coiled-coil stalks and a series of identical tandem coding repeats which are not required for adherence. By evaluating the adherence capacity of <italic>H. influenzae</italic> expressing Cha deletion derivatives, we established that the N-terminal 473 residues of Cha harbor the binding domains responsible for Cha-mediated adherence to epithelial cells. In additional studies, we demonstrated that this same N-terminal region mediates bacterial aggregation through inter-bacterial Cha-Cha binding. </p><p>Further analysis revealed that variable Cha-mediated adherence is linked to spontaneous changes in the number of identical tandem repeats predicted to comprise a coiled-coil stalk domain. Variation in repeat copy number has a direct effect on Cha adhesive and aggregative activity, independent of an impact on transcription of the <italic>cha</italic> locus or surface localization of Cha protein. Moreover, length of Cha surface fibers correlates with repeat copy number expansion. We propose two hypotheses to explain how repeat expansion inhibits bacterial aggregation and host cell binding: 1) Variation in the number of 28-amino acid repeats may influence the conformation of Cha, thus changing the surface accessibility of the Cha binding pocket. 2) Repeat expansion results in the formation of long, flexible Cha fibers on the bacterial cell surface that may have a greater propensity to interact with neighboring Cha trimers at the N-terminus, thereby precluding adherence to other bacteria or host epithelial cells. </p><p>In additional studies screening adherent cryptic genospecies isolates for expression of Cha protein, we identified an additional, antigenically-divergent Cha variant that we refer to as Cha2. Amino acid sequence and domain comparison of Cha2 with Cha (now Cha1) revealed that the structurally undefined N-terminal sequences (encompassing the Cha1 adhesive and aggregative domain) are strikingly divergent. Inspite of this, Cha2 mediates efficient adherence to human epithelial cells, similar to Cha1.</p><p>Identification of Cha offers insight into the apparent tissue tropism associated with the <italic>Haemophilus</italic> cryptic genospecies. We speculate that the unique regulation of Cha adhesive activity enhances the adaptive capability of this pathogenic organism in the human host.</p> / Dissertation

Page generated in 0.1348 seconds