• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 3
  • 1
  • Tagged with
  • 17
  • 10
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Méthode de faisabilité et de conception de colonnes à cloison (DWC) pour la distillation de mélanges non-idéaux et azéotropiques / Feasibility and design method for divided wall distillation column (DWC) for non-ideal and azeotropic mixtures

Worms, Guillaume 22 September 2017 (has links)
Implantées depuis plus de dix ans dans l’industrie, l’intérêt des colonnes à cloison n’est aujourd’hui plus à démontrer. Suivant les applications envisagées, elles peuvent permettre d’important gain tant énergétique qu’économique. Cependant leur design est toujours complexe et les méthodes de conception développées ne s’adressent qu’à des applications avec des mélanges proches de l’idéalité. Le développement d’une nouvelle méthode de design d’une colonne à distillation de mélanges non-idéaux applicable aux colonnes à cloison constitue l’objet d’étude de cette thèse. Dans un premier temps, une procédure de faisabilité et de design d’une colonne classique basée sur les feuilles opératoires a été proposée. Les paramètres de design obtenus sont ensuite utilisés comme initialisation d’une simulation rigoureuse conduite au sein du logiciel Prosim Plus. Afin de tester cette procédure, des mélanges idéaux, non-idéaux et azéotropiques ont été utilisés. Il a pu être montré que les paramètres de design obtenus permettent d’accéder à un design plus fiable et plus efficient, aussi bien d’un point de vue énergétique qu’économique, que ceux obtenus par la bien connue méthode shortcut FUGK. Dans un second temps, la procédure a été adaptée aux colonnes à cloison. Les paramètres obtenus ont également servi à initialiser une simulation rigoureuse et la procédure a été testée avec les mêmes mélanges. Il a été mis en évidence que les paramètres de design obtenus permettaient d’obtenir une bonne initialisation de la colonne. Comparée avec une autre méthode développée précédemment par le laboratoire, la procédure développée s’est révélée plus fiable et a permis l’obtention de design plus économique tant du point de vue énergétique qu’en termes d’investissement. Enfin, une phase de validation expérimentale a également été réalisée sur une installation pilote. Dans un premier temps, l’instrumentation et le contrôle de la colonne ont été fortement améliorés. Dans un second temps, des résultats expérimentaux réalisés sur avec un mélange hétéro-azéotropique ont pu valider des simulations en terme de profils de composition et de température interne ainsi que les compositions et les débits de sortie de la colonne. / The constant increase of divided wall columns usage in the industry for more than ten years shows that its benefits are no longer to be demonstrated. Depending on the applications, it can provide significant energy and economic savings. However their design is still complicated and existing design methods are only applicable to ideal mixtures. The development of a new design method for divided wall distillation column for non-ideal and azeotropic mixtures is the subject of this thesis. Firstly, a feasibility and design procedure for classic distillation column based on the operation leaves was proposed. Calculated design parameters are then used to initialize a rigorous simulation run in ProSimPlus© software. The procedure was tested with ideal, non-ideal and azeotropic mixtures. Results show that calculated design parameters provide a more reliable and efficient column design, from an energetic and economic point of view, than those calculated with the well-known FUGK shortcut method. Secondly the procedure was adapted for divided wall column. Compared with a method developed previously in the laboratory, this new methodology is more reliable and provides more energy and cost efficient designs. Finally, an experimental validation work was made on a pilot plant. Firstly, both instrumentation and control was strongly improved. Secondly, experimental results with a hetero-azeotropic mixture were able to validate rigorous simulation in terms of compositions and temperature profiles inside the column as well as outlet compositions and flowrates of the column.
12

Evaluation of instantaneous and cumulative models for reactivity ratio estimation with multiresponse scenarios

Zhou, Xiaoqin January 2004 (has links)
Estimating reactivity ratios in multicomponent polymerizations is becoming increasingly important. At the same time, using cumulative models is becoming imperative, as some multicomponent systems are inherently so fast that instantaneous "approximate" models can not be used. In the first part of the thesis, triad fractions (sequence length characteristics) are employed in a multiresponse scenario, investigating different error structures and levels. A comparison is given between instantaneous triad fraction models and instantaneous composition model, which represent the current state-of-the-art. In the second part of the thesis, extensions are discussed with cumulative composition and triad fraction models over the whole conversion range, thus relating the problem of reactivity ratio estimation to the optimal design of experiments (i. e. optimal sampling) over polymerization time and conversion. The performance of cumulative multiresponse models is superior to that of their instantaneous counterparts, which can be explained from an information content point of view. As a side-project, the existence of azeotropic points is investigated in terpolymer (Alfrey-Goldfinger equation) and tetrapolymer (Walling-Briggs equation) systems.
13

Evaluation of instantaneous and cumulative models for reactivity ratio estimation with multiresponse scenarios

Zhou, Xiaoqin January 2004 (has links)
Estimating reactivity ratios in multicomponent polymerizations is becoming increasingly important. At the same time, using cumulative models is becoming imperative, as some multicomponent systems are inherently so fast that instantaneous "approximate" models can not be used. In the first part of the thesis, triad fractions (sequence length characteristics) are employed in a multiresponse scenario, investigating different error structures and levels. A comparison is given between instantaneous triad fraction models and instantaneous composition model, which represent the current state-of-the-art. In the second part of the thesis, extensions are discussed with cumulative composition and triad fraction models over the whole conversion range, thus relating the problem of reactivity ratio estimation to the optimal design of experiments (i. e. optimal sampling) over polymerization time and conversion. The performance of cumulative multiresponse models is superior to that of their instantaneous counterparts, which can be explained from an information content point of view. As a side-project, the existence of azeotropic points is investigated in terpolymer (Alfrey-Goldfinger equation) and tetrapolymer (Walling-Briggs equation) systems.
14

Modelagem e simulação do processo de pervaporação na separação de misturas azeotropicas / Modeling and simulation of the pervaporation process for separating azeotropic mixtures

Torres Alvarez, Mario Eusebio 29 September 2005 (has links)
Orientador: Maria Regina Wolf Maciel / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-05T04:48:34Z (GMT). No. of bitstreams: 1 TorresAlvarez_MarioEusebio_D.pdf: 10381978 bytes, checksum: 6d92d3ef3288c11e5d00589fa7bff9e7 (MD5) Previous issue date: 2005 / Resumo: Neste trabalho de tese, foi realizado um estudo do potencial do processo de pervaporação como um processo de separação de misturas azeotrópicas. Foram realizados o estudo, a avaliação e a comparação de dois modelos matemáticos selecionados da literatura par o processo de pervaporação, que têm como base o mecanismo solução-difusão. Forma desenvolvidos dois programas computacionais, o PERKAT e o PERBRUN, que pemitiram avaliar, segundo estes modelos, qualquer tipo de mistura binária, aqui exemplificados pelos sistemas etanol/água e acetato de metila/água. Foi proposto um modelo matemático a partir do mecanismo solução-difusão procurando minimizar a necessidade de dados experimentais e assim, possibilitar a avaliação rápida em estágios iniciais de projetos de processos. Foi , ainda, elaborado um algoritmo de calculo para o processo de pervaporação. Afim de obter um modelo mais robusto, minimizando a necessidade de dados experimentais, foram realizados e estudo da predição do coeficiente de difusão na membrana, a determinação do parâmetro de interação binário solvente/polímero, a validação do método de predição com dados experimentais e uma análise de sensibilidade paramétrica. Com isso, foi desenvolvido o simulador ¿PERVAP¿ a partir do modelo matemático proposto neste trabalho. A intenção foi possibilitar ao engenheiro de processos tomadas de decisão rápidas a respeito da possibilidade de usar o processo de pervaporação para a separação de uma mistura binária qualquer ...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: In this work, a study of the potential of pervaporation process for the separation of azeotropic mixtures was carries out. Two mathematical models were chosen from the literature for pervaporation process based on solution diffusion mechanism and a study, an evaluation and a comparison between these models were made. Two computational programs were developed, PERKAT and PERBRUN, which allow the evaluation, according to these models, of any type of binary mixture, here exemplified by the system ethanol/water and methyl acetate/water. A mathematical model was proposed based on the solution-diffusion mechanism with the aim of minimizing the necessity of experimental data and, thus, to make possible the fast evaluation in early stages of process design.Furthermore, it was elaborated a calculation algorithm for the pervaporation process. In order to get a more robust model, minimizing the necessity of experimental data, the study of the prediction of the diffusion coefficient in the membrane, the determination of the binary interaction parameter of solvent/polymer, the validation of the prediction method with experimental data and a parametric sensitivity analysis were carried out. With this, the "PERVAP" simulator was developed from the mathematical model proposed in this work. The intention was to make possible for engineers to take rapid decisions regarding the possibility for using the pervaporation process for separating any binary mixture ...Note: The complete abstract is available with the full electronic digital thesis or dissertations / Doutorado / Desenvolvimento de Processos Químicos / Doutor em Engenharia Química
15

The separation of detergent range alkanes and alcohol isomers with supercritical carbon dioxide

Zamudio, Michelle 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Data on the process performance at different operating conditions are required to determine the feasibility of a separation process. Such data can be experimentally measured, but due to the time and costs associated with pilot plant scale experiments, the use of predictive process models are often preferred. The main aim of this project is to establish a working process model in Aspen Plus® that can be used to predict the separation performance of a supercritical fluid fractionation process aimed at the separation of mixtures of detergent range alkanes and alcohol isomers where similar boiling points or low relative volatilities can occur. Currently, an azeotropic distillation process is employed for the separation of detergent range alkanes and alcohols. Although this process shows good separation performance, some concerns regarding the operating conditions are raised: the preferred entrainer, diethylene glycol, is toxic to humans; very low operating pressures of 0.016 – 0.031 MPa and high temperatures of 473 K are required; additional processing units and materials are required to remove the entrainer from the product streams. An alternative process, supercritical fluid fractionation, is proposed in this work after previous studies have reported that this process have potential for the separation of alkanes and alcohols. The supercritical fluid fractionation process addresses the concerns of the azeotropic distillation process in the following ways: a non-toxic solvent, CO2, is used as the separating agent; mild temperatures of 344 K is proposed, but at the cost of the low operating pressures of the azeotropic process; and a single process unit and no additional material is required to separate the solvent from the product streams. A process model was developed in Aspen Plus® to evaluate the separation performance of the newly proposed supercritical fluid fractionation process and compare it to the current azeotropic distillation process. The development of the process model included the development of an accurate thermodynamic model in Aspen Plus®. After thorough evaluation of a number of cubic equations of state, the RK-ASPEN model was found to be superior in its representation and prediction of phase transition pressures for multi-component mixtures of detergent range alkanes and alcohols in the temperature range 318 – 348 K. Phase transition pressures could be predicted with an error of less than 6 % with the inclusion of regressed polar parameters and binary solute-solvent interaction parameters for two multi-component mixtures: CO2 + (20 % n-dodecane + 70 % 1-decanol + 10 % 3,7-dimethyl-1-octanol) and CO2 + (25 % n-decane + 25 % 1-decanol + 25 % 3,7-dimethyl-1-octanol + 25 % 2,6-dimethyl-2-octanol). Polar parameters were regressed from pure component vapour pressure data predicted with correlations available in Aspen Plus®. Binary interaction parameters were regressed from experimental bubble and dew point data. Binary bubble and dew point data were measured for a number of systems containing ethane or CO2 and a C10-alkane or C10-alcohol isomer at temperatures between 308 K and 353 K, and compositions ranging between 0.01 and 0.7 mass fraction solute. A comparison between the phase equilibrium data measured for these systems revealed that the structure of the molecule, and not only the molecular weight, influences its solubility in the supercritical solvent. The phase transition pressures of n-decane, 2-methylnonane, 3-methylnonane and 4-methylnonane did not differ significantly in CO2 or ethane, and these compounds will in all likelihood not be separated in a supercritical fluid fractionation process. The phase transition pressures measured for the C10-alcohol isomers decreased in both CO2 and ethane in the following order: 1-decanol, 3,7-dimethyl-1-octanol, 2-decanol, 2,6-dimethyl-2-octanol and 3,7-dimethyl-3-octanol. The position of the hydroxyl group and the number, length and position of the side branches, all influence the solubility behaviour and phase transition pressures of the isomeric alcohols in the supercritical solvent. Since the use of ethane did not show any significant benefits with regard to selectivity, the use of the less harmful and less expensive solvent, CO2, in further investigations was justified. The RK-ASPEN thermodynamic model, with the inclusion of the regressed polar and binary solute-solvent interaction parameters, was implemented in the process model and the separation performance of the process was simulated at different operating conditions for the CO2 + (25 % n-decane + 25 % 1-decanol + 25 % 3,7-dimethyl-1-octanol + 25 % 2,6-dimethyl-2-octanol) mixture. A comparison to experimental pilot plant data revealed that the model cannot be used to predict the separation performance at low fractionation temperatures (316 K) due to shortcomings in the thermodynamic model. However, the performance of the process at high fractionation temperatures (344 K) could be predicted well, with an error of 10 – 36 %. Simulations for the CO2 + (25 % n-decane + 25 % 1-decanol + 25 % 3,7-dimethyl-1-octanol + 25 % 2,6-dimethyl-2-octanol) and CO2 + (20 % n-dodecane + 70 % 1-decanol + 10 % 3,7-dimethyl-1-octanol) mixtures showed that the composition of the feed mixture have a significant effect on the location and size of the operating window and optimum operating conditions. The optimum operating conditions were defined as the conditions where an acceptable selectivity ratio and alcohol recovery occurred simultaneously. Since the selectivity ratio and alcohol recovery have opposing optimization approaches, a number of possible optimum operating conditions exist, based on the product specifications. When an alcohol and an alkane with similar phase behaviour exist in a mixture, a distinct minimum selectivity ratio will occur at a point within the extract-to-feed ratio limits of the process. When the alkanes and alcohols present in a mixture do not have similar or overlapping phase transition pressures, the minimum selectivity ratio will typically cover a small range of extract-to-feed ratios at the high end limit of the extract-to-feed ratio range. To summarize: A process model was established in Aspen Plus® that can be used to determine the feasibility and separation performance of a supercritical fractionation process for a feed mixture of detergent range alkane and alcohol isomers. The model was used to prove that an SFF process is a feasible alternative process to consider for the removal of alkanes from mixtures of detergent range alcohol isomers, even where overlapping boiling points or low relative volatilities occur. During the development of the process model, the following significant novel contributions were made: · New phase equilibrium data were measured for C10-alkane and C10-alcohol isomers in supercritical ethane, as published in The Journal of Supercritical Fluids 58 (2011) 330 – 342. · New phase equilibrium data were measured for C10-alkane and C10-alcohol isomers in supercritical CO2, as published in The Journal of Supercritical Fluids 59 (2011) 14 – 26. · A thermodynamic model was developed in Aspen Plus® that can accurately predict the phase transition pressures of binary, ternary and multi-component mixtures of detergent range alkanes and alcohols in supercritical CO2, as published in The Journal of Supercritical Fluids 84 (2013) 132 – 145. · A process model was developed in Aspen Plus® that can be used to predict the separation performance of a supercritical fluid fractionation process for the separation of mixtures of detergent range alkanes and alcohols. · Experimental and simulated results indicated that a supercritical fluid fractionation process can be implemented successfully to separate an alkane from a mixture of alcohol isomers, as was shown for two mixtures: CO2 + (25 % n-decane + 25 % 1-decanol + 25 % 3,7-dimethyl-1-octanol + 25 % 2,6-dimethyl-2-octanol) and CO2 + (20 % n-dodecane + 70 % 1-decanol + 10 % 3,7-dimethyl-1-octanol). / AFRIKAANSE OPSOMMING: Data oor die omvang van skeiding by verskillende bedryfstoestande word benodig om die lewensvatbaarheid van ’n skeidingsproses te bepaal. Sulke data kan eksperimenteel gemeet word, maar as gevolg van die tyd en kostes geassosieer met eksperimente op loodsaanlegskaal, word die gebruik van prosesmodelle verkies. Die hoofdoel van hierdie projek is om ’n werkende prosesmodel, wat daarop gemik is om C8 – C20 alkane en alkohol isomere te skei, in Aspen Plus® tot stand te bring om die omvang van die skeiding van ’n superkritiese fraksioneringsproses te meet. Tans word azeotropiese distillasie gebruik vir die skeiding van C8 – C20 alkane en alkoholisomere. Alhoewel goeie skeiding met hierdie proses bewerkstellig word, is daar sekere eienskappe van die proses wat aandag vereis: die voorgestelde skeidingsagent, dietileen glikol, is giftig vir mense; baie lae bedryfsdrukke van 0.016 – 0.031 MPa en hoë temperature van 473 K word benodig; addisionele proseseenhede en materiaal is nodig om die skeidingsagent van die produkte te verwyder. Die gebruik van ’n alternatiewe proses - superkritiese fraksionering - word in hierdie werk voorgestel nadat vorige studies getoon het dat hierdie proses die potensiaal het om alkane en alkohole te skei. Die superkritiese fraksioneringsproses spreek al die kommerwekkende eienskappe van azeotropiese distillasie aan soos volg: ’n veilige oplosmiddel, CO2, word as die skeidingsagent gebruik; gemiddelde temperature van 344 K word voorgestel, maar ten koste van lae bedryfsdrukke; ’n enkele proseseenheid en geen addisionele materiaal word benodig om die oplosmiddel van die produkte te skei nie. ’n Prosesmodel is in Aspen Plus® ontwikkel om die omvang van die skeiding wat deur die voorgestelde superkritiese fraksioneringsproses teweeggebring is, te evalueer en te vergelyk met die azeotropiese distillasieproses wat tans in gebruik is. Die ontwikkeling van die prosesmodel sluit die ontwikkeling van ’n akkurate termodinamiese model in Aspen Plus® in. Na deeglike evaluasie van ’n aantal kubiese toestandsvergelykings is gevind dat die RK-ASPEN-model die faseoorgangsdrukke van multi-komponentmengsels van C8 – C20 alkane en alkohole die beste voorspel binne die temperatuurbereik van 318 – 348 K. Faseoorgangsdrukke kon voorspel word met ’n fout van minder as 6 % met die insluiting van voorafbepaalde polêre parameters en binêre interaksie-parameters vir twee multi-komponentmengsels: CO2 + (20 % n-dodekaan + 70 % 1-dekanol + 10 % 3,7-dimetiel-1-oktanol) and CO2 + (25 % n-dekaan + 25 % 1-dekanol + 25 % 3,7-dimetiel-1-oktanol + 25 % 2,6-dimetiel-2-oktanol). Polêre parameters is bepaal met dampdruk data, wat voorspel is met korrelasies in Aspen Plus®. Binêre interaksieparameters is van eksperimentele faseoorgangsdata bepaal. Binêre faseoorgangsdata is vir ’n aantal sisteme wat uit etaan of CO2 en ’n C10-alkaan- of C10-alkohol-isomeer bestaan, gemeet by temperature tussen 308 K en 353 K en samestellings van tussen 0.01 en 0.7 massafraksie van die opgeloste stof. ’n Vergelyking tussen die gemete fase-ewewigsdata het onthul dat die struktuur van die molekuul, en nie net die molekulêre massa nie, die oplosbaarheid van die stof in die superkritiese oplosmiddel beïnvloed. Die faseoorgangsdrukke van n-dekaan, 2-metielnonaan, 3-metielnonaan en 4-metielnonaan het geen skynbare verskille getoon in etaan of CO2 nie en dus sal hierdie stowwe in alle waarkynlikheid nie met ’n superkritiese fraksioneringsproses geskei kan word nie. Die faseoorgangsdrukke wat vir die C10-alkohol gemeet is, het in beide etaan en CO2 afgeneem in die volgende volgorde: 1-dekanol, 3,7-dimetiel-1-oktanol, 2-dekanol, 2,6-dimetiel-2-oktanol en 3,7-dimetiel-3-oktanol. Die posisie van die hidroksielgroep en die aantal, lengte en posisie van die sytakke beïnvloed die oplosbaarheidsgedrag van die alkohol-isomere in die superkritiese oplosmiddel. Aangesien die gebruik van etaan nie enige voordele ten opsigte van selektiwiteit inhou nie, is die gebruik van die minder skadelike en goedkoper oplosmiddel, CO2, vir verdere ondersoeke geregverdig. Die ontwikkelde termodinamiese model, met die insluiting van die polêre parameters en binêre interaksieparameters, is in die prosesmodel ingesluit en die omvang van die skeiding van die proses is gesimuleer by verskillende bedryfstoestande vir die CO2 + (25 % n-dekaan + 25 % 1-dekanol + 25 % 3,7-dimetiel-1-oktanol + 25 % 2,6-dimetiel-2-oktanol) mengsel. ’n Vergelyking tussen die gesimuleerde data en die eksperimentele loodsaanlegdata het onthul dat die model nie die omvang van die skeiding kan voorspel by lae fraksioneringstemperature (316 K) nie as gevolg van die tekortkominge in die termodinamiese model. Die omvang van die skeiding by hoë temperature (344 K) kon egter goed voorspel word met ’n fout van 10 – 36 %. Simulasies van die CO2 + (25 % n-dekaan + 25 % 1-dekanol + 25 % 3,7-dimetiel-1-oktanol + 25 % 2,6-dimetiel-2-oktanol) en CO2 + (20 % n-dodekaan + 70 % 1-dekanol + 10 % 3,7-dimetiel-1-oktanol) mengsels het getoon dat die samestelling van die voermengsel ’n beduidende effek op die grootte van die bedryfsvenster en optimum bedryfstoestande het. Die optimum bedryfstoestande word gedefinieer as die toestande waar ’n aanvaarbare selektiwiteitsverhouding en alkoholherwinning terselfdertyd voorkom. Aangesien die selektiwiteitsverhouding en alkoholherwinning teenstrydige optimeringsbenaderings het, bestaan daar ’n aantal optimum bedryfstoestande gebaseer op die produkspesifikasies. Wanneer ’n alkohol en ’n alkaan met ooreenstemmende fasegedrag saam in ’n mengsel voorkom, bestaan daar ’n duidelike minimum selektiwiteitsverhouding by ’n punt binne die ekstrak-tot-voer-verhoudingslimiete van die proses. Wanneer die alkane en alkohole in ’n mengsel nie ooreenstemmende fasegedrag toon nie, sal die minimum selektiwiteitsverhouding oor ’n reeks ekstrak-tot-voer-verhoudings voorkom, tipies by die hoë limiet van die ekstrak-tot-voer-verhoudingsreeks. Om op te som: ’n Prosesmodel is in Aspen Plus® tot stand gebring wat die lewensvatbaarheid en omvang van die moontlike skeiding van ’n superkritiese fraksioneringsproses vir voermengsels van C8 – C20 alkane en alkohol-isomere kan voorspel. Die model is gebruik om te bewys dat ’n superkritiese proses ’n lewensvatbare alternatiewe proses is om te oorweeg vir die verwydering van alkane uit mengsels van alkohol-isomere, self waar ooreenstemmende kookpunte of lae relatiewe vlugtigheid tussen komponente voorkom. Tydens die ontwikkeling van die prosesmodel is die volgende beduidende nuwe bydraes gemaak: · Nuwe fase-ewewigsdata is gemeet vir C10-alkaan- en C10-alkohol-isomere in superkritiese etaan, soos gepubliseer in The Journal of Supercritical Fluids 58 (2011) 330 – 342. · Nuwe fase-ewewigsdata is gemeet vir C10-alkaan and C10-alkohol isomere in superkritiese CO2, soos gepubliseer in The Journal of Supercritical Fluids 59 (2011) 14 – 26. · ’n Termodinamiese model is ontwikkel in Aspen Plus® wat die faseoorgangsdrukke van binêre, ternêre en multi-komponent mengsels van C8 – C20 alkane en alkohol-isomere in superkritiese CO2 akkuraat kan voorspel, soos gepubliseer in The Journal of Supercritical Fluids 84 (2013) 132 – 145. · ’n Prosesmodel is ontwikkel in Aspen Plus® wat die omvang van die moontlike skeiding van ’n superkritiese fraksioneringsproses, gemik op die skeiding van mengsels van C8 – C20 alkane en alkohol-isomere, kan voorspel. · Eksperimentele en gesimuleerde resultate toon aan dat ’n superkritiese fraksioneringsproses suksesvol geïmplementeer kan word vir die skeiding van ’n alkaan vanuit ’n mengsel van alkohol-isomere, soos bewys vir twee mengsels: CO2 + (25 % n-dekaan + 25 % 1-dekanol + 25 % 3,7-dimetiel-1-oktanol + 25 % 2,6-dimetiel-2-oktanol) en CO2 + (20 % n-dodekaan + 70 % 1-dekanol + 10 % 3,7-dimetiel-1-oktanol).
16

Supercritical Gas Cooling and Near-Critical-Pressure Condensation of Refrigerant Blends in Microchannels

Andresen, Ulf Christian 14 December 2006 (has links)
A study of heat transfer and pressure drop in zero ozone-depletion-potential (ODP) ‎refrigerant blends in small diameter tubes was conducted. The azeotropic refrigerant ‎blend R410A (equal parts of R32 and R125 by mass) has zero ODP and has properties ‎similar to R22, and is therefore of interest for vapor compression cycles in high-‎temperature-lift space-conditioning and water heating applications. Smaller tubes lead to ‎higher heat transfer coefficients and are better suited for high operating pressures.‎ Heat transfer coefficients and pressure drops for R410A were determined experimentally ‎during condensation across the entire vapor-liquid dome at 0.8, 0.9xPcritical and gas ‎cooling at 1.0, 1.1, 1.2xPcritical in three different round tubes (D = 3.05, 1.52, 0.76 mm) ‎over a mass flux range of 200 < G < 800 kg/m2-s. A thermal amplification technique was ‎used to accurately determine the heat duty for condensation in small quality increments ‎or supercritical cooling across small temperature changes while ensuring low ‎uncertainties in the refrigerant heat transfer coefficients. ‎ The data from this study were used in conjunction with data obtained under similar ‎operating conditions for refrigerants R404A and R410A in tubes of diameter 6.22 and ‎‎9.40 mm to develop models to predict heat transfer and pressure drop in tubes with ‎diameters ranging from 0.76 to 9.40 mm during condensation. Similarly, in the ‎supercritical states, heat transfer and pressure drop models were developed to account for ‎the sharp variations in the thermophysical properties near the critical point.‎ The physical understanding and models resulting from this investigation provide the ‎information necessary for designing and optimizing new components that utilize R410A ‎for air-conditioning and heat pumping applications.‎
17

Desenvolvimento de estratégia de desacoplamento no controle de coluna de destilação usando a técnica de separação de sinais. / Decoupling strategy development in the distillation column control using the signals separation technique.

CARMO, Shirlene Kelly Santos. 20 April 2018 (has links)
Submitted by Jesiel Ferreira Gomes (jesielgomes@ufcg.edu.br) on 2018-04-20T20:53:07Z No. of bitstreams: 1 SHIRLENE KELLY SANTOS CARMO – TESE (PPGEQ) 2015.pdf: 3441674 bytes, checksum: 2a66c0c04d01e56f10189d8b206ebc1c (MD5) / Made available in DSpace on 2018-04-20T20:53:07Z (GMT). No. of bitstreams: 1 SHIRLENE KELLY SANTOS CARMO – TESE (PPGEQ) 2015.pdf: 3441674 bytes, checksum: 2a66c0c04d01e56f10189d8b206ebc1c (MD5) Previous issue date: 2015-02-06 / Capes / Grande parte das indústrias apresenta complexidade no que diz respeito ao seu modo de operação. A fim de reduzir os problemas relacionados ao forte acoplamento existente nesses processos, a busca pela incorporação de dispositivos de inteligência artificial vem apresentando uma tendência crescente nos últimos anos. Devido à complexidade de operação e controle em processos multivariáveis, o diagnóstico e monitoramento de falhas nos processos tornaram-se cada vez mais difícil, com isso a aplicação destes dispositivos tem alcançado resultados satisfatórios em relação aos procedimentos executados com operadores humanos. A análise de componentes independentes (ICA) é uma técnica de separação de sinais que se baseia no uso de estatísticas de ordem superior para estimar cada uma das fontes desconhecidas por meio da observação de diversas misturas geradas a partir destas fontes. Embora sejam encontrados trabalhos recentes sobre a utilização do ICA em processos industriais, apenas dois trabalhos até o presente momento, foram aplicados em processos envolvendo colunas de destilação. O presente trabalho tem como objetivo propor uma estratégia de controle a uma coluna de destilação de alta pureza. A estratégia é baseada na técnica de separação de sinais ICA, tornando as malhas de controle desacopladas e facilitando assim o desempenho do controle. O desempenho do sistema de controle utilizando a técnica apresentou excelentes resultados em relação a uma estrutura convencional sem desacoplamento. As estruturas de controle foram implementadas em ambiente Aspen Plus DynamicsTM e Simulink/ Matlab®. O processo foi estruturado em ambiente Aspen Plus Dynamics™ e os controladores foram implementados no Simulink. / Much of the industry presents complexity with regard to its mode of operation. In order to reduce the problems related to existing strong engagement in these processes, the search for the incorporation of artificial intelligence devices has shown an increasing trend in recent years. Due to the complexity of operation and control in multivariate processes, the diagnosis and fault monitoring in the processes have become increasingly difficult, thus the application of these devices has achieved satisfactory results in relation to procedures performed with human operators. The independent component analysis (ICA) is a signal separation technique that is based on the use of higher order statistics to estimate each of the unknown source by observing various mixtures generated from these sources. Although found recent work on the use of the ICA in industrial processes, only two studies to date, have been applied in cases involving distillation columns. This paper aims to propose a control strategy to a high purity distillation column. The strategy is based on the ICA signal separation technique, making decoupled control loops, thus facilitating control performance. The performance of the control system using the technique showed excellent results compared to a conventional structure without decoupling. The control structures have been implemented in Aspen Plus Dynamics™ and Simulink / Matlab® environment. The process was structured environment Aspen Plus Dynamics™ and the controls were implemented in Simulink.

Page generated in 0.0506 seconds