Spelling suggestions: "subject:"bsplines"" "subject:"b_splines""
71 |
Estimation de la diffusion thermique et du terme source du modèle de transport de la chaleur dans les plasmas de tokamaks.Mechhoud, Sarah 17 December 2013 (has links) (PDF)
Cette thèse porte sur l'estimation simultanée du coefficient de diffusion et du terme source régissant le modèle de transport de la température dans les plasmas chauds. Ce phénomène physique est décrit par une équation différentielle partielle (EDP) linéaire, parabolique du second-ordre et non-homogène, où le coefficient de diffusion est distribué et le coefficient de réaction est constant. Ce travail peut se présenter en deux parties. Dans la première, le problème d'estimation est traité en dimension finie ("Early lumping approach"). Dans la deuxième partie, le problème d'estimation est traité dans le cadre initial de la dimension infinie ("Late lumping approach"). Pour l'estimation en dimension finie, une fois le modèle établi, la formulation de Galerkin et la méthode d'approximation par projection sont choisies pour convertir l'EDP de transport en un système d'état linéaire, temps-variant et à entrées inconnues. Sur le modèle réduit, deux techniques dédiées à l'estimation des entrées inconnues sont choisies pour résoudre le problème. En dimension infinie, l'estimation en-ligne adaptative est adoptée pour apporter des éléments de réponse aux contraintes et limitations dues à la réduction du modèle. Des résultats de simulations sur des données réelles et simulées sont présentées dans ce mémoire.
|
72 |
Otimiza??o de forma aplicando B-splines sob crit?rio integral de tens?esLins, Sidney de Oliveira 09 February 2009 (has links)
Made available in DSpace on 2014-12-17T14:57:51Z (GMT). No. of bitstreams: 1
SidneyOL.pdf: 4301786 bytes, checksum: 9f7a7a0d30a925198ccebaa046c885a4 (MD5)
Previous issue date: 2009-02-09 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural
analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method
using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem.
A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis
are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient / Neste trabalho prop?e-se uma metodologia computacional para resolver problemas de Otimiza??o de Forma para projeto estrutural. A aplica??o ? particularizada para problemas bidimensionais em estado plano de tens?es, de modo a minimizar a massa atendendo um crit?rio de tens?o. Para atender ao crit?rio param?trico de tens?es ? proposto um crit?rio global de tens?o de von Mises, dessa maneira, amplia-se o crit?rio local de tens?es sobre o dom?nio, visando ?
obten??o de programas mais seguros. O problema ? aproximado pelo M?todo dos Elementos Finitos utilizando elementos triangulares da base Lagrangiana padr?o com seis n?s, tendo uma estrat?gia de gera??o autom?tica de malhas baseada em um crit?rio geom?trico do elemento. O modelo geom?trico do contorno material ? definido por curvas param?tricas B-splines. Estas curvas possuem caracter?sticas vantajosas para implementa??o do processo de otimiza??o
de forma, que se utiliza dos pontos-chave para determinar o m?nimo do problema. A formula??o do problema de otimiza??o faz uso do M?todo Lagrangiano Aumentado, que transforma o problema de otimiza??o com restri??o, em problema irrestrito. A solu??o da fun??o Lagrangiana Aumentada ? alcan?ada pela determina??o da an?lise das sensibilidades anal?ticas em rela??o aos pontos-chave da curva B-spline. Como conseq??ncia, o problema de otimiza??o reduz-se ? solu??o de uma seq??ncia de problemas de limites laterais do tipo
caixa, o qual ? resolvido por um m?todo de proje??o de segunda ordem que usa o m?todo de Quase-Newton projetado sem mem?ria. S?o demonstrados v?rios exemplos para o M?todo de Otimiza??o de Forma integrado a
An?lise da Sensibilidade Anal?tica sob o crit?rio global de tens?o de von Mises
|
73 |
Ajuste de curva B-spline fechada com peso / Curve fitting whith closed weigthed B-splinePereira, Larissa Rocha 17 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The aim of this work is to develop a method of curve fitting using closed B-spline closed for
application on reconstruction of cross-sections of objects. For this study specifically where
the sections are closed curves, it has been implemented a method to close the curve B-spline
curve, in such way that the curve is smooth on the closing point. The developed method is
based on least squares approximation with weights, which defines that the curve should be as
close as possible to the real curve. The weights in this case are responsible for the tightness
of the approximation to each data points, whose points represent the coordinate of the object
section that will be rebuild. Moreover, adjustments and impositions on the curve have been
proposed so that it has a better result and represent more accurately the desired cross section.
Particular characteristics of the curve were used to help enforce and define the settings. For
the analysis, B-spline curves using the developed method, were obtained showing good
results. / O objetivo desse trabalho é desenvolver um método de ajuste de curvas B-spline fechada para
a aplicação na reconstrução de seções transversais de um objeto. Por especificamente nesse
trabalho as seções serem seções fechadas, foi implementado um método para o fechamento da
curva B-spline, de modo que a mesma possuía suavidade no seu fechamento. O método
desenvolvido e utilizado foi baseado na aproximação por mínimos quadrados com pesos, que
define que a curva obtida deva ser mais próxima possível da curva real. Os pesos nesse caso
são responsáveis pela aproximação ou afastamento da curva em relação aos pontos dados,
pontos esses que melhor representam as coordenadas da seção do objeto que se deseja
reconstruir. Além disso, foram desenvolvidos ajustes e imposições na curva para que ela
tivesse um melhor resultado e representasse de forma mais fiel a seção transversal desejada.
Para a imposição e definição dos ajustes foram utilizadas características particulares da curva.
Para a análise, curvas B-spline utilizando o método desenvolvido, foram traçadas e foram
constatados os resultados desejados. / Mestre em Engenharia Mecânica
|
74 |
Komprimované vzorkování pro efektivní sledování objektu senzorovou sítí / Compressive sampling for effective target tracking in a sensor networkKlimeš, Ondřej January 2019 (has links)
The master's thesis deals with target tracking. For this a decentralized sensor network using distributed particle filter with likelihood consensus is used. This consensus is based on a sparse representation of local likelihood function in a suitable chosen dictionary. In this thesis two dictionaries are compared: the widely used Fourier dictionary and our proposed B-splines. At the same time, thanks to the sparsity of distributed data, it is possible to implement compressed sensing method. The results are compared in terms of tracking error and communication costs. The thesis also contains scripts and functions in MATLAB.
|
75 |
Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique / Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problemEstecahandy, Elodie 19 September 2013 (has links)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée. / The determination of the shape of an elastic obstacle immersed in water from some measurements of the scattered field is an important problem in many technologies such as sonar, geophysical exploration, and medical imaging. This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its nonlinear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished here pertains to the mathematical and numerical analysis of the elasto-acoustic DP and of the IOP. More specifically, we have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.
|
76 |
Reconstruction en tomographie dynamique par approche inverse sans compensation de mouvementMomey, Fabien 20 June 2013 (has links) (PDF)
La tomographie est la discipline qui cherche à reconstruire une donnée physique dans son volume, à partir de l'information indirecte de projections intégrées de l'objet, à différents angles de vue. L'une de ses applications les plus répandues, et qui constitue le cadre de cette thèse, est l'imagerie scanner par rayons X pour le médical. Or, les mouvements inhérents à tout être vivant, typiquement le mouvement respiratoire et les battements cardiaques, posent de sérieux problèmes dans une reconstruction classique. Il est donc impératif d'en tenir compte, i.e. de reconstruire le sujet imagé comme une séquence spatio-temporelle traduisant son "évolution anatomique" au cours du temps : c'est la tomographie dynamique. Élaborer une méthode de reconstruction spécifique à ce problème est un enjeu majeur en radiothérapie, où la localisation précise de la tumeur dans le temps est un prérequis afin d'irradier les cellules cancéreuses en protégeant au mieux les tissus sains environnants. Des méthodes usuelles de reconstruction augmentent le nombre de projections acquises, permettant des reconstructions indépendantes de plusieurs phases de la séquence échantillonnée en temps. D'autres compensent directement le mouvement dans la reconstruction, en modélisant ce dernier comme un champ de déformation, estimé à partir d'un jeu de données d'acquisition antérieur. Nous proposons dans ce travail de thèse une approche nouvelle ; se basant sur la théorie des problèmes inverses, nous affranchissons la reconstruction dynamique du besoin d'accroissement de la quantité de données, ainsi que de la recherche explicite du mouvement, elle aussi consommatrice d'un surplus d'information. Nous reconstruisons la séquence dynamique à partir du seul jeu de projections courant, avec pour seules hypothèses a priori la continuité et la périodicité du mouvement. Le problème inverse est alors traité rigoureusement comme la minimisation d'un terme d'attache aux données et d'une régularisation. Nos contributions portent sur la mise au point d'une méthode de reconstruction adaptée à l'extraction optimale de l'information compte tenu de la parcimonie des données -- un aspect typique du problème dynamique -- en utilisant notamment la variation totale (TV) comme régularisation. Nous élaborons un nouveau modèle de projection tomographique précis et compétitif en temps de calcul, basé sur des fonctions B-splines séparables, permettant de repousser encore la limite de reconstruction imposée par la parcimonie. Ces développements sont ensuite insérés dans un schéma de reconstruction dynamique cohérent, appliquant notamment une régularisation TV spatio-temporelle efficace. Notre méthode exploite ainsi de façon optimale la seule information courante à disposition ; de plus sa mise en oeuvre fait preuve d'une grande simplicité. Nous faisons premièrement la démonstration de la force de notre approche sur des reconstructions 2-D+t à partir de données simulées numériquement. La faisabilité pratique de notre méthode est ensuite établie sur des reconstructions 2-D et 3-D+t à partir de données physiques "réelles", acquises sur un fantôme mécanique et sur un patient
|
77 |
Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustiqueEstecahandy, Elodie 19 September 2013 (has links) (PDF)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée.
|
Page generated in 0.0309 seconds