• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation and design methodology for hybrid SET-CMOS logic at room temperature operation / Simulation et méthodologie de conception de circuits logiques hybrides SET-CMOS opérants à température ambiante

Parekh, Rutu January 2012 (has links)
The purpose of this thesis is to research the possibility of realizing hardware support for hybrid single electron transistor (SET)-CMOS circuits by a systematic approach of design, analysis and simulation. The metallic SET transistors considered in this work are fabricated within the chip interconnect layers using CMOS back-end-of-line (BEOL)-compatible processing. The CMOS process integration can be divided into front-end-of-line (FEOL) and BEOL processes. The FEOL includes processes required to form isolated CMOS transistors whereas BEOL is the second portion of the IC fabrication where the devices get interconnected through the wiring using multiple layers of dielectrics and metals. Therefore, metallic SET circuits can be easily stacked above the CMOS platform presenting a low cost, low thermal budget, improving the overall yield at high-volume production of highly integrated systems. This considerably decreases the interconnect parasitics and increases the density of functions while maintaining the overall acceptable performance. Many problems such as low current drivability, delay and small voltage gain that hinder SET technology for its implementation in integrated circuits can be alleviated by intelligent circuit design. Although a complete replacement of CMOS by SETs is unlikely in the near future, an augmentation of CMOS with SETs is desirable if interfacing from and to CMOS works well. Interfacing from CMOS to SET circuitry is simple as the current and voltage levels are small and in accessible range. But interfacing CMOS from SET circuits is delicate due to SET logic's low current driving capability for CMOS and its interconnect. There is no concrete research on the interface issue wherein a SET-only circuitry drives a CMOS and its interconnects. For such hybridization to become possible, it is necessary to demonstrate the SET logic driving capability for CMOS with sufficient current drive and output voltage. The core SET logic can be designed to operate at low voltage, but at the interface the output of the SET logic must be in a voltage range that can be fed to a CMOS input for proper logic functionality. It is hence necessary to develop and adopt a systematic design methodology for such hybrid circuits at a specific technology node for room temperature operation. In this thesis we will look at a generalized design methodology that can be applied to (a) develop a fabrication model with parasitic effect of a hybrid SET-CMOS and SET-only circuits, (b) design and analyze the SET based fundamental building block in hybrid SET-CMOS or SET-only circuit and (c) simulate such a circuitry to assess its merits. More specifically, we will address the interfacing issue of such hybrid circuits in which we exploit the maximum capability of a SET logic in terms of driving capability, voltage response and power for a room temperature operation. The result of this research motivates the application of SET logic in 2 stages realizing some properties beyond those of CMOS devices. The first stage is the heterogeneous integration at chip level around a CMOS core. In such a circuitry, the SET introduces new functionalities such as reconfigurable logic, random number-based circuits, and multiband filtering circuits that can be combined with CMOS based general purpose processors or I/O signal restoration. The second stage of application is to use a new information processing technology focussed on a "new switch" exploiting a new state variable to provide functional scaling substantially beyond that attainable solely with ultimately scaled CMOS.
2

Process Window Challenges in Advanced Manufacturing: New Materials and Integration Solutions

Fox, Robert, Augur, Rod, Child, Craig, Zaleski, Mark 22 July 2016 (has links) (PDF)
With the continued progression of Moore’s law into the sub-14nm technology nodes, interconnect RC and power dissipation scaling play an increasingly important role in overall product performance. As critical dimensions in the mainstream Cu/ULK interconnect system shrink below 30nm, corresponding increases in relative process variation and decreases in overall process window mandate increasingly complex integrated solutions. Traditional metallization processes, e.g. PVD barrier and seed layers, no longer scale for all layout configurations as they reach physical and geometric limitations. Interactions between design, OPC, and patterning also play more and more critical roles with respect to reliability and yield in volume manufacturing; stated simply, scaling is no longer “business as usual”. Restricted design layouts, prescriptive design rules, novel materials, and holistic integration solutions each therefore become necessary to maximize available process windows, thus enabling new generations of cost-competitive products in the marketplace.
3

Process Window Challenges in Advanced Manufacturing: New Materials and Integration Solutions

Fox, Robert, Augur, Rod, Child, Craig, Zaleski, Mark 22 July 2016 (has links)
With the continued progression of Moore’s law into the sub-14nm technology nodes, interconnect RC and power dissipation scaling play an increasingly important role in overall product performance. As critical dimensions in the mainstream Cu/ULK interconnect system shrink below 30nm, corresponding increases in relative process variation and decreases in overall process window mandate increasingly complex integrated solutions. Traditional metallization processes, e.g. PVD barrier and seed layers, no longer scale for all layout configurations as they reach physical and geometric limitations. Interactions between design, OPC, and patterning also play more and more critical roles with respect to reliability and yield in volume manufacturing; stated simply, scaling is no longer “business as usual”. Restricted design layouts, prescriptive design rules, novel materials, and holistic integration solutions each therefore become necessary to maximize available process windows, thus enabling new generations of cost-competitive products in the marketplace.
4

Electro-thermal characterization, TCAD simulations and compact modeling of advanced SiGe HBTs at device and circuit level / Caractérisation électrothermique, simulations TCAD et modélisation compacte de transistors HBT en SiGe au niveau composant et circuit

D'Esposito, Rosario 29 September 2016 (has links)
Ce travail de thèse présente une étude concernant la caractérisation des effets électrothermiques dans les transistors bipolaires à hétérojonction (HBT) en SiGe. Lors de ces travaux, deux procédés technologiques BiCMOS à l’état de l’art ont été analysés: le B11HFC de Infineon Technologies (130nm) et le B55 de STMicroelectronics (55nm).Des structures de test dédiées ont étés conçues, pour évaluer l’impact électrothermique du back end of line (BEOL) de composants ayant une architecture à un ou plusieurs doigts d’émetteur. Une caractérisation complète a été effectuée en régime continu et en mode alternatif en petit et en grand signal. De plus, une extraction des paramètres thermiques statiques et dynamiques a été réalisée et présentée pour les structures de test proposées. Il est démontré que les figures de mérite DC et RF s’améliorent sensiblement en positionnant des couches de métal sur le transistor, dessinées de manière innovante et ayant pour fonction de guider le flux thermique vers l’extérieur. L’impact thermique du BEOL a été modélisé et vérifié expérimentalement dans le domaine temporel et fréquentiel et aussi grâce à des simulations 3D par éléments finis. Il est à noter que l’effet du profil de dopage sur la conductivité thermique est analysé et pris en compte.Des topologies de transistor innovantes ont étés conçues, permettant une amélioration des spécifications de l’aire de sécurité de fonctionnement, grâce à un dessin innovant de la surface d’émetteur et du deep trench (DTI).Un modèle compact est proposé pour simuler les effets de couplage thermique en dynamique entre les émetteurs des HBT multi-doigts; ensuite le modèle est validé avec de mesures dédiées et des simulations TCAD.Des circuits de test ont étés conçus et mesurés, pour vérifier la précision des modèles compacts utilisés dans les simulateurs de circuits; de plus, l’impact du couplage thermique entre les transistors sur les performances des circuits a été évalué et modélisé. Finalement, l’impact du dissipateur thermique positionné sur le transistor a été étudié au niveau circuit, montrant un réel intérêt de cette approche. / This work is focused on the characterization of electro-thermal effects in advanced SiGe hetero-junction bipolar transistors (HBTs); two state of the art BiCMOS processes have been analyzed: the B11HFC from Infineon Technologies (130nm) and the B55 from STMicroelectronics (55nm).Special test structures have been designed, in order to evaluate the overall electro-thermal impact of the back end of line (BEOL) in single finger and multi-finger components. A complete DC and RF electrical characterization at small and large signal, as well as the extraction of the device static and dynamic thermal parameters are performed on the proposed test structures, showing a sensible improvement of the DC and RF figures of merit when metal dummies are added upon the transistor. The thermal impact of the BEOL has been modeled and experimentally verified in the time and frequency domain and by means of 3D TCAD simulations, in which the effect of the doping profile on the thermal conductivity is analyzed and taken into account.Innovative multi-finger transistor topologies are designed, which allow an improvement of the SOA specifications, thanks to a careful design of the drawn emitter area and of the deep trench isolation (DTI) enclosed area.A compact thermal model is proposed for taking into account the mutual thermal coupling between the emitter stripes of multi-finger HBTs in dynamic operation and is validated upon dedicated pulsed measurements and TCAD simulations.Specially designed circuit blocks have been realized and measured, in order to verify the accuracy of device compact models in electrical circuit simulators; moreover the impact on the circuit performances of mutual thermal coupling among neighboring transistors and the presence of BEOL metal dummies is evaluated and modeled.

Page generated in 0.0909 seconds