Spelling suggestions: "subject:"basis off attraction"" "subject:"basis oof attraction""
1 |
Convergence Basin Analysis in Perturbed Trajectory Targeting ProblemsCollin E. York (5930948) 25 April 2023 (has links)
<p>Increasingly, space flight missions are planned to traverse regions of space with complex dynamical environments influenced by multiple gravitational bodies. The nature of these systems produces motion and regions of sensitivity that are, at times, unintuitive,</p>
<p>and the accumulation of trajectory dispersions from a variety of sources guarantees that spacecraft will deviate from their pre-planned trajectories in this complex environment, necessitating the use of a targeting process to generate a new feasible reference path. To ensure mission success and a robust path planning process, trajectory designers require insight into the interaction between the targeting process, the baseline trajectory, and the dynamical environment. In this investigation, the convergence behavior of these targeting processes is examined. This work summarizes a framework for characterizing and predicting the convergence behavior of perturbed targeting problems, consisting of a set of constraints, design variables, perturbation variables, and a reference solution within a dynamical system. First, this work identifies the typical features of a convergence basin and identifies a measure of worst-case performance. In the absence of an analytical method, efficient numerical discretization procedures are proposed based on the evaluation of partial derivatives at the reference solution to the perturbed targeting problem. A method is also proposed for approximating the tradespace of position and velocity perturbations that achieve reliable</p>
<p>convergence toward the baseline solution. Additionally, evaluated scalar quantities are introduced to serve as predictors of the simulation-measured worst-case convergence behavior based on the local rate of growth in the constraints as well as the local relative change in the targeting-employed partial derivatives with respect to perturbations.</p>
<p><br></p>
<p>A variety of applications in different dynamical regions and force models are introduced to evaluate the improved discretization techniques and their correlation to the predictive metrics of convergence behavior. Segments of periodic orbits and transfer trajectories from past and planned missions are employed to evaluate the relative convergence performance across sets of candidate solutions. In the circular restricted three-body problem (CRTBP), perturbed targeting problems are formulated along a distant retrograde orbit and a near-rectilinear halo orbit (NRHO) in the Earth-Moon system. To investigate the persistence of results from the CRTBP in an ephemeris force model, a targeting problem applied to an NRHO is analyzed in both force models. Next, an L1 -to-L2 transit trajectory in the Sun-Earth system is studied to explore the effect of moving a maneuver downstream along</p>
<p>a trajectory and altering the orientations of the gravitational bodies. Finally, a trans-lunar return trajectory is explored, and the convergence behavior is analyzed as the final maneuver time is varied.</p>
|
2 |
Niutono metodo realizacija ir tyrimas taikant Žulija aibes / Implementation and analysis of Newton’s method using Julia setsIsodaitė, Reda 16 August 2007 (has links)
Šiame darbe buvo analizuojama Niutono fraktalų Žulija aibės. Dažniausiai Žulija ir užpildytų Žulija aibių vaizdai gaunami, panaudojant "pabėgimo laiko" algoritmą. Norėdami šį algoritmą naudoti kompleksinio daugianario šaknų vizualizacijai, turime nurodyti iteracijų skaiči��, algoritmo tikslumą, žingsnį bei kompleksiniu Niutono metodu rasti daugianario šaknis. Taikant Niutono metodą, buvo susidurta su pradinių taškų parinkimo problema. Tyrimo metu patvirtinta, kad pakanka Niutono iteracinę funkciją taikyti taškams z, kurių modulis 2. Darbe buvo pasiūlytas šaknų lokalizacijos srities nustatymo būdas. Naudojant PL-algoritmą, pasirinktu žingsniu pereiname visus taškus, kurie patenka į šią sritį. Taip gauname Niutono-Rafsono fraktalus ir lygiagrečiai analizuojame Žulija aibes bei užpildytas Žulija aibes. / Julia sets and filled Julia sets of Newton‘s fractals are analyzed in this work. The Escape Time Algorithm provides us with a means for "seeing" the filled Julia sets of Newton‘s fractals, but roots, (zeros) of the polynomial under investigation should be known. The Newton‘s method for finding roots of an algebraic equation is well known. Here in the paper the complex Newton method for finding roots of a complex polynomial is presented. The main difficulties, associated with implementation of this method in practice, are discussed, namely: construction of the set of initial points (first approximations of the roots), finding the basin of attraction for a particular root and so forth. Some experimental results are presented.
|
3 |
Emerging Trade Patterns in a 3-Region Linear NEG Model: Three ExamplesCommendatore, Pasquale, Kubin, Ingrid, Sushko, Iryna 19 September 2017 (has links) (PDF)
This chapter draws attention to a specific feature of a NEG model that uses linear (and not iso-elastic) demand functions, namely its ability to account for zero trade. Thus, it represents a suitable framework to study how changes in parameters that are typical for NEG models, such as trade costs and regional market size, not only shape the regional distribution of economic activity, but at the same time determine the emergence of additional trade links between formerly autarkic regions. We survey some related papers and present a three-region framework that potentially nests many possible trade patterns. To focus the analysis, we study in more detail three specific trade patterns frequently found in the EU trade network. We start with three autarkic regions; then we introduce the possibility that two regions trade with each other; and, finally, we allow for one region trading with the other two, but the latter are still not trading with each other. We find a surprising plethora of long-run equilibria each involving a specific regional distribution of economic activity and a specific pattern of trade links. We show how a reduction in trade costs shapes simultaneously industry location and the configuration of the trade network.
|
4 |
Analyse de stabilité et de performance d'une classe de systèmes non-linéaires à commutations en temps discret / Stability and performance analysis of a class of discrete-time switched non-linear systemsCavichioli Gonzaga, Carlos Alberto 07 September 2012 (has links)
Les travaux de cette thèse portent sur les problèmes d'analyse de stabilité et de synthèse de commande de systèmes non-linéaires à commutations en temps discret. Nos résultats obtenus sont fondés sur une nouvelle fonction de Lyapunov-Lur'e adaptée au temps discret. Nous reprenons le problème classique d'analyse de stabilité globale de systèmes linéaires connectés à une non-linéarité du type secteur borné. Notre fonction permet de traiter une classe de non-linéarités plus générale que celle des approches fondées sur la fonction de Lur'e classique. Ensuite, la stabilité locale et la synthèse de commande de ces systèmes avec une loi de commande non-linéaire saturée sont résolues en considérant les lignes de niveau de notre fonction de Lyapunov comme estimation du bassin d'attraction de l'origine. Notre estimation est composée par des ensembles non-connexes et non-convexes qui s'adaptent bien à l'allure du bassin d'attraction et donc est moins conservative que les ensembles ellipsoïdaux. Nous étendons nos résultats pour étudier les systèmes à commutations lorsque chacun des modes présente une non-linéarité du type secteur et la saturation. D'une part, en supposant que la loi de commutation est arbitraire, nous obtenons des conditions suffisantes pour assurer la propriété de stabilité pour toute loi de commutation. Dans ce cadre, notre fonction s'avère intéressante afin de fournir une estimation bien adaptée au bassin d'attraction. D'autre part, en considérant la loi de commutation comme une variable de commande, nous proposons une stratégie de commutation sur le minimum des fonctions de Lyapunov modales. Cette stratégie définit des partitions de l'espace d'état relatives à l'activation des modes qui ne sont pas uniquement des régions coniques, normalement exhibées par des approches fondées sur les fonctions quadratiques commutées / In this PhD thesis, several problems of stability analysis and control design of discrete-time switched nonlinear systems are addressed. As main contribution, a new class of Lyapunov functions which takes the nonlinearity into account has been proposed. We show that these functions are suitable to solve the classical stability analysis problem of linear systems connected to a cone bounded nonlinearity. Instead of the original Lyapunov Lur'e function, the assumptions about the nonlinearity variation are not required. Furthermore, the local stability analysis and control synthesis problems of Lur'e systems subject to control saturation are tackled by considering the level set of our function as an estimate of the basin of attraction. We expose that this estimate, which is given by non-convex and disconnected sets, is less conservative than ellipsoidal sets. We extend these results in order to deal with the problems of stability analysis and stabilization of discrete-time switched nonlinear systems. On one hand, we consider the case of arbitrary switching such that our sufficient conditions assure the properties of stability for all possible switching rules. In this framework, we highlight that our function is able to provide a suitable estimate of the basin of attraction. On the other hand, we tackle the problem of switching rule design aiming at the stabilization of discrete-time switched systems with nonlinear modes. We propose a switching strategy depending on the minimum of our switched Lyapunov Lur'e function. Hence, our framework leads to state space partitions, related to the mode activation, which are not restricted to conic sets, commonly exhibited by the switched quadratic functions approaches
|
5 |
Design, Modeling, and Nonlinear Dynamics of a Cantilever Beam-Rigid Body MicrogyroscopeMousavi Lajimi, Seyed Amir 05 December 2013 (has links)
A new type of cantilever beam gyroscope is introduced, modeled, and analyzed. The main structure includes a cantilever beam and a rigid body attached to the free end of the beam. The model accounts for the eccentricity, that is the offset of the center of mass of the rigid body relative to the beam's free end. The first and second moments of mass and the rotary inertia appear in the equations of motion and boundary conditions. The common mechanism of electrostatic actuation of microgyroscopes is used with the difference of computing the force at the center of mass resulting in the electrostatic force and moment in the boundary conditions. By using the extended Hamilton's principle, the method of assumed modes, and Lagrange's differential equations, the equations of motion, boundary conditions, and the discretized model are developed. The generalized model simplifies to other beam gyroscope models by setting the required parameters to zero.
Considering the DC and AC components of the actuating and sensing methods, the response is resolved into the static and dynamic components. The static configuration is studied for an increasing DC voltage. For the uncoupled system of equations, the explicit equation relating the DC load and the static configuration is computed and solved for the static configuration of the beam-rigid body in each direction. Including the rotation rate, the stationary analysis is performed, the stationary pull-in voltage is identified, and it is shown that the angular rotation rate does not affect the static configuration. The modal frequencies of the beam-rigid body gyroscope are studied and the instability region due to the rotation rate is computed. It is shown that the gyroscope can operate in the frequency modulation mode and the amplitude modulation mode. To operate the beam-rigid body gyroscope in the frequency modulation mode, the closed-form relation of the observed modal frequency split and the input rotation rate is computed. The calibration curves are generated for a variety of DC loads. It is shown that the scale factor improves by matching the zero rotation rate natural frequencies.
The method of multiple scales is used to study the reduced-order nonlinear dynamics of the oscillations around the static equilibrium. The modulation equations, the ``slow'' system, are derived and solved for the steady-state solutions. The computational shooting method is employed to evaluate the results of the perturbation method. The frequency response and force response plots are generated. For combinations of parameters resulting in a single-valued response, the two methods are in excellent agreement. The synchronization of the response occurs in the sense direction for initially mismatched natural frequencies. The global stability of the system is studied by drawing phase-plane diagrams and long-time integration of response trajectories. The separatrices are computed, the jump phenomena is numerically shown, and the dynamic pull-in of the response is demonstrated. The fold bifurcation points are identified and it is shown that the response jumps to the higher/lower branch beyond the bifurcation points in forward/backward sweep of the amplitude and the excitation frequency of AC voltage.
The mechanical-thermal (thermomechanical) noise effect on the sense response is characterized by using a linear approximation of the system and the nonlinear "slow" system obtained by using the method of multiple scales. To perform linear analysis, the negligible effect of Coriolis force on the drive amplitude is discarded. The second-order drive resonator is solved for the drive amplitude and phase. Finding the sense response due to the thermal noise force and the Coriolis force and equating them computes the mechanical-thermal noise equivalent rotation rate in terms of system parameters and mode shapes. The noise force is included in the third-order equation of the perturbation and equation to account for that in the reduced-order nonlinear response. The numerical results of linear and reduced-order nonlinear thermal noise analyses agree. It is shown that higher quality factor, higher AC voltage, and operating at lower DC points result in better resolution of the microsensor.
|
6 |
Sistemas dinâmicos: bacias de atração e aplicações / Dynamical systems: basins of attraction and aplicationsFassoni, Artur César 28 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:45:34Z (GMT). No. of bitstreams: 1
texto completo.pdf: 4122687 bytes, checksum: 9aed02ae94295a63dd1fa23aba738ef5 (MD5)
Previous issue date: 2012-02-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work proposes to present a description of the theory on the basins of attraction of hyperbolic equilibrium points of continuous dynamical systems, to develop a method for the numerical determination of these basins and to examine the results of applying the theory and method in models of population dynamics. The determination of the basins of attraction allows the study of control strategies on the parameters, in order to increase or decrease such regions, as interest. From the biological phenomena viewpoint, these predictions are very important, because if an equilibrium point represents the extinction of a species that must be preserved, then one seeks to guarantee that the natural initial conditions do not are in the basin of attraction of that point. This is made by studying control strategies on the parameters, for that the point basin decreases suficiently. From the viewpoint of stability analysis of equilibrium points of dynamical systems, the theory of basins of attraction brings topological consequences to the phase space which allow, indirectly, conduct a global analysis in the parameters space, allowing wider results of which are generally obtained without this theory. / O presente trabalho propõe-se a apresentar uma descrição da teoria sobre as bacias de atração de pontos de equilíbrio hiperbólicos de sistemas dinâmicos em tempo contínuo, a desenvolver um método para a determinação numérica dessas bacias e a examinar os resultados da aplicação da teoria e do método em modelos de dinâmica de populações. A determinação das bacias de atração permite o estudo de estratégias de controle sobre os parâmetros, de modo a aumentar ou diminuir tais regiões, conforme o interesse. Do ponto de vista de fenômenos biológicos, estas previsões são importantes, pois, se um ponto de equilíbrio representa a extinção de uma espécie que deve ser preservada, então procura-se garantir que as condições iniciais naturais não estejam na bacia de atração do mesmo, estudando-se estratégias de controle sobre os parâmetros para que a bacia do ponto diminua suficientemente. Do ponto de vista da análise de estabilidade dos pontos de equilíbrio de um sistema, a teoria de bacias de atração traz consequências topológicas ao espaço de fase que permitem, de forma indireta, realizar uma análise global, no espaço de parâmetros, da estabilidade dos pontos de equilíbrio, garantindo resultados mais amplos dos que se obtêm geralmente, quando não se faz uso desta teoria.
|
7 |
Caracterização, estimativas e bifurcações da região de estabilidade de sistemas dinâmicos não lineares / Characterization, estimates and bifurcations of stability region of nonlinear dynamical systemsAmaral, Fabíolo Moraes 24 September 2010 (has links)
Estimar a região de estabilidade de um ponto de equilíbrio assintoticamente estável é importante em aplicações tais como sistemas de potência, economia e ecologia. A compreensão da estrutura qualitativa da fronteira da região de estabilidade é fundamental para estimar com eficiência a região de estabilidade. Caracterizações topológicas e dinâmicas da fronteira da região de estabilidade foram desenvolvidas ao longo das últimas décadas. Estas caracterizações foram desenvolvidas sob hipóteses de hiperbolicidade dos pontos de equilíbrio na fronteira e transversalidade. Para sistemas que dependem de parâmetros, a condição de hiperbolicidade pode ser violada em pontos de bifurcações. Estaremos interessados em estimar a região de estabilidade, para sistemas sujeitos a variações de parâmetros, onde ocorre a violação da condição de hiperbolicidade dos pontos de equilíbrio na fronteira da região de estabilidade devido ao aparecimento de uma bifurcação sela-nó do tipo zero nesta fronteira. Apresentaremos neste trabalho uma caracterização completa da fronteira da região de estabilidade na presença de um ponto de equilíbrio não hiperbólico sela-nó do tipo zero. Motivados também em oferecer um algoritmo conceitual para obter estimativas da região de estabilidade perturbada via conjunto de nível de uma dada função energia na vizinhança de um parâmetro de bifurcação sela-nó do tipo zero, buscaremos exibir resultados que permitam compreender o comportamento da região de estabilidade e de sua fronteira sob a influência das variações do parâmetro, incluindo variações do parâmetro próximo a um parâmetro de bifurcação sela-nó do tipo zero. / Estimating the stability region of an asymptotically stable equilibrium point is fundamental in applications such as power systems, economy and ecology. The knowledge of the qualitative structure of the stability boundary is essential to estimate with efficiency the stability region. Topological and dynamical characterizations of the stability boundary have been developed over the past decades. These characterizations were developed under assumptions of hyperbolicity of equilibrium points on the stability boundary and transversality. For systems that depend on parameters, the condition of hyperbolicity can be violated at points of bifurcations. We will be primarily interested in estimating the stability region, for systems subjected to parameter variations, when the condition of hyperbolicity of equilibrium points on the stability boundary is violated due to the appearance of a type-zero saddle-node bifurcation on the stability boundary. We will develop in this work, a complete characterization of the stability boundary in the presence of a type-zero saddle-node non-hyperbolic equilibrium point. Also, motivated to providing a conceptual algorithm to obtain estimates of the perturbed stability region via level sets of a given energy function in the neighborhood of a type-zero saddle-node bifurcation parameter, we offer results that explain the behavior of the stability region and its boundary under the influence of parameter variations, including variations of the parameter close to a type-zero saddle-node bifurcation parameter.
|
8 |
Caracterização, estimativas e bifurcações da região de estabilidade de sistemas dinâmicos não lineares / Characterization, estimates and bifurcations of stability region of nonlinear dynamical systemsFabíolo Moraes Amaral 24 September 2010 (has links)
Estimar a região de estabilidade de um ponto de equilíbrio assintoticamente estável é importante em aplicações tais como sistemas de potência, economia e ecologia. A compreensão da estrutura qualitativa da fronteira da região de estabilidade é fundamental para estimar com eficiência a região de estabilidade. Caracterizações topológicas e dinâmicas da fronteira da região de estabilidade foram desenvolvidas ao longo das últimas décadas. Estas caracterizações foram desenvolvidas sob hipóteses de hiperbolicidade dos pontos de equilíbrio na fronteira e transversalidade. Para sistemas que dependem de parâmetros, a condição de hiperbolicidade pode ser violada em pontos de bifurcações. Estaremos interessados em estimar a região de estabilidade, para sistemas sujeitos a variações de parâmetros, onde ocorre a violação da condição de hiperbolicidade dos pontos de equilíbrio na fronteira da região de estabilidade devido ao aparecimento de uma bifurcação sela-nó do tipo zero nesta fronteira. Apresentaremos neste trabalho uma caracterização completa da fronteira da região de estabilidade na presença de um ponto de equilíbrio não hiperbólico sela-nó do tipo zero. Motivados também em oferecer um algoritmo conceitual para obter estimativas da região de estabilidade perturbada via conjunto de nível de uma dada função energia na vizinhança de um parâmetro de bifurcação sela-nó do tipo zero, buscaremos exibir resultados que permitam compreender o comportamento da região de estabilidade e de sua fronteira sob a influência das variações do parâmetro, incluindo variações do parâmetro próximo a um parâmetro de bifurcação sela-nó do tipo zero. / Estimating the stability region of an asymptotically stable equilibrium point is fundamental in applications such as power systems, economy and ecology. The knowledge of the qualitative structure of the stability boundary is essential to estimate with efficiency the stability region. Topological and dynamical characterizations of the stability boundary have been developed over the past decades. These characterizations were developed under assumptions of hyperbolicity of equilibrium points on the stability boundary and transversality. For systems that depend on parameters, the condition of hyperbolicity can be violated at points of bifurcations. We will be primarily interested in estimating the stability region, for systems subjected to parameter variations, when the condition of hyperbolicity of equilibrium points on the stability boundary is violated due to the appearance of a type-zero saddle-node bifurcation on the stability boundary. We will develop in this work, a complete characterization of the stability boundary in the presence of a type-zero saddle-node non-hyperbolic equilibrium point. Also, motivated to providing a conceptual algorithm to obtain estimates of the perturbed stability region via level sets of a given energy function in the neighborhood of a type-zero saddle-node bifurcation parameter, we offer results that explain the behavior of the stability region and its boundary under the influence of parameter variations, including variations of the parameter close to a type-zero saddle-node bifurcation parameter.
|
Page generated in 0.1394 seconds